Geochemical Implication of Rare Earth Element Tetrad Effect from a Leucocratic Granite Gneiss in the Imweon Area, Gangwon Province, Korea

강원도 임원지역 우백질 화강편마암에 나타난 희토류원소 테트라드 효과의 지구화학적 의의

  • Lee, Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yong-Sun (Department of Environmental Geosciences, Pukyoung National University) ;
  • Kim, Nam-Hoon (Department of Environmental Geosciences, Pukyoung National University) ;
  • Park, Kye-Hun (Department of Environmental Geosciences, Pukyoung National University)
  • 이승구 (한국지질자원연구원 지하수지열연구부) ;
  • 김건한 (한국지질자원연구원 지질환경재해연구부) ;
  • 송용선 (부경대학교 환경지질과학과) ;
  • 김남훈 (부경대학교 환경지질과학과) ;
  • 박계헌 (부경대학교 환경지질과학과)
  • Published : 2007.03.30

Abstract

Here we discuss a geochemical characterisitc of rare earth element (REE) pattern of a Precambrain leucogranitic gneiss at Imweon, Gangwon Province, Korea. The outcrop includes biotite gneiss xenolith. The leucocratic granite gneiss contacting with biotite gneiss is pegmatitic. However, there is no evidence of contact metamorphism between biotite gneiss and leucocratic-pegmatitic granite gneiss. The leucocratic granite gneiss shows a specific phenomenon of M-type (convex curved) tetrad effect in chondrite-normalized REE patterns with large negative Eu anomaly. The degree of REE tetrad effect in the leucocratic-pegmatitic granitec gneiss is weak and shows partly W-type (concave curved) tetrad effect. The Eu anomaly of leucocratic granite gneiss has close relationship with the degree of tetrad effect as well as Ca/Sr ratio. Our results suggest that the REE tetrad effect from the leucocratic granite gneiss should be formed during differentiation process of granitic magma. We also confirmed that the weathering might affect Eu or Ce anomaly rather than the formation of REE tetrad effect in granitic rock.

강원도 임원진 부근에 분포하는 선캠브리아기 우백질 화강편마암체 노두에서의 희토류원소 분포도가 갖는 지구화학적 의의에 대해 토의하고자 한다. 이 노두는 흑운모 편마암을 포획암으로 갖고 있으며, 이 흑운모 편마암과 접촉하고 있는 우백질 화강편마암은 주변에 비해 구성광물의 입자가 큰 거정질이고, 접촉변성 작용의 흔적은 관찰되지 않는다. 이 노두에서의 우백질 화강 편마암은 풍화도와 관계없이 전반적으로 Eu의 강한 부(-)의 이상과 더불어 희토류원소의 M-형의 테트라드 효과라 불리우는 특이한 희토류원소 분포도 특성을 갖고 있다. 그리고 흑운모 편마암과의 접촉부에서는 M-형의 테트라드 효과가 약화되었거나 혹은 부분적으로 W-형의 테트라드 효과가 관찰된다. 우백질 화강편마암에서의 Eu의 부의 이상은 Ca/Sr비의 변화뿐만 아니라 테트라드 효과의 존재와도 밀접한 연관성을 보여준다. 이는 임원지역의 노두에서 관찰된 희토류원소의 테트라드 효과가 우백질 화강편마암의 분화과정상에서 형성된 것이며, 암석의 풍화가 Eu의 이상 혹은 Ce의 이상의 변화를 가져올 수는 있지만 희토류원소의 테트라드 효과를 만들거나 크기를 변화시킨 요인은 아님을 지시해준다.

Keywords

References

  1. 고상모, 황덕환, 김수영, 이동진, 김대엽, 이한영, 김용욱, 김영인, 윤현수, 백상호, 이춘오, 2001, 국내광물자원 자료 전산화 및 광상재평가 종합시스템 개발연구, 한국지질자원연구원 보고서 2000-R-T102-P-03, 90 p
  2. 이승구, 성낙훈, 김용제, 增田彰正, 2001, 동위원소희석법을 이용한 열이온 질량분석 : 희토류원소 지구화학에의 응용. 암석학회지, 10, 190-201
  3. Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, 323-333 https://doi.org/10.1007/s004100050159
  4. Dia, A., Gruau, G, Olivie-Lauquet, G, Riou, C., Molenat J. and Curmi, P., 2000, The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 4131-415l https://doi.org/10.1016/S0016-7037(00)00494-4
  5. Irber, W, 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, 63, 489-508 https://doi.org/10.1016/S0016-7037(99)00027-7
  6. Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198 https://doi.org/10.1016/S0024-4937(01)00066-4
  7. Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J. and Bryne, R.H., 1995, The solubility control of rare earth elements in natural terrestrial waters and the significance of $PO_{4}^{3-}$ and $CO_3^{2-}$ in limiting dissolved rare earth element concentrations: A review of recent information. Aqua. Geochem., 1, 157-173 https://doi.org/10.1007/BF00702889
  8. Johannesson, K.H., Stetzenbach, K.J., Hodge, Y.F. and Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319 https://doi.org/10.1016/0012-821X(96)00016-7
  9. Johannesson, K.H., Stetzenbach, K.J. and Hodge, V.F., 1997, Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618, 1997 https://doi.org/10.1016/S0016-7037(97)00177-4
  10. Kawabe, I., Kitahara, Y. and Naito, K., 1991, Non-chondritic Yttrium/Holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochem. 1., 25, 31-44
  11. Lee, S.G., Masuda, A. and Kim, H.S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67 https://doi.org/10.1016/0009-2541(94)90041-8
  12. Lee, S.G, Lee, D. H., Kim, Y., Chae, B.G., Kim, W.Y. and Woo, N.C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fractured-filling calcite. Appl. Geochem., 18, 135-143 https://doi.org/10.1016/S0883-2927(02)00071-9
  13. Lee, S.G, Kim, Y., Chae, B.G., Koh, D.C. and Kim, K.H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem., vol. 19, 1711-1725 https://doi.org/10.1016/j.apgeochem.2004.03.008
  14. Lipin, B.R. and McKay, G.A., 1989, Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, 348 p
  15. Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. J., 9, 183-184 https://doi.org/10.2343/geochemj.9.183
  16. Masuda, A and Akagi, T., 1989, Lanthanide tetrad effect observed in leucogranite from China. Geochem. J., 23, 245-253 https://doi.org/10.2343/geochemj.23.245
  17. Masuda, A, Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248 https://doi.org/10.1016/0016-7037(73)90131-2
  18. Masuda, A, Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124 https://doi.org/10.2343/geochemj.21.119
  19. McLennan, S.M., 1994, Rare earth element geochemistry and the 'tetrad' effect. Geochim. Cosmochim. Acta, 58, 2025-2033 https://doi.org/10.1016/0016-7037(94)90282-8
  20. Minami, M., Masuda, A., Takahashi, K. Mamoru, A. and Shimizu, H., 1998, Y-Ho fractionation and tetrad effect observed in cherts. Geochem. J., 32, 405-419 https://doi.org/10.2343/geochemj.32.405
  21. Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D., 2002, Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta, 66, 1185-1196 https://doi.org/10.1016/S0016-7037(01)00849-3
  22. Monecke, T., Kempe D. and Monecke J., 2003, Comment on the paper 'W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan' by Y. Takahasi, H. Yoshida, N. Sato, K. Hama, Y. Yusa and H. Shimizu. Chem. Geol., 202, 183-184 https://doi.org/10.1016/j.chemgeo.2003.06.001
  23. Monecke, T., Dulski, P. and Kempe, U., 2007, Origin of convex tetrads in rare earth element distribution patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn- W deposit, Zermany. Geochim. Cosmochim. Acta, 71, 335-353 https://doi.org/10.1016/j.gca.2006.09.010
  24. Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y. and Shimizu, H., 2002, W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposits, central Japan. Chem. Geol., 184, 311-335 https://doi.org/10.1016/S0009-2541(01)00388-6
  25. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312 p
  26. Veksler, I.V, Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B.. 2005, Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta, 69, 2847-2860 https://doi.org/10.1016/j.gca.2004.08.007
  27. Yurimoto, R., Duke, E.F., Papike, J.J. and Shearer, C.K., 1990, Are discontinuous chondrite-norrnalized REE patterns in pegmatititic granite systems the results of monazite fractionation. Geochim. Cosmochim. Acta, 54, 2141-2145 https://doi.org/10.1016/0016-7037(90)90277-R