Change in tooth length and angulation on panoramic radiographs taken at different labiolingual and buccolingual inclinations

치아의 순(협)설 경사도 변화에 따라 파노라마 방사선 사진에 나타난 치아 길이 및 각도 변화

  • Choi, Gab-Lim (Department of Orthodontics, School of Dentistry, Chosun University) ;
  • Lim, Sung-Hoon (Department of Orthodontics, School of Dentistry, Chosun University) ;
  • Kim, Jae-Duck (Department of Orthomaxillofacial Radiology, School of Dentistry, Chosun University) ;
  • Kim, Kwang-Won (Department of Orthodontics, School of Dentistry, Chosun University)
  • 최갑림 (조선대학교 치과대학 교정학교실) ;
  • 임성훈 (조선대학교 치과대학 교정학교실) ;
  • 김재덕 (조선대학교 치과대학 구강악안면 방사선학교실) ;
  • 김광원 (조선대학교 치과대학 교정학교실)
  • Published : 2007.04.30

Abstract

Objective: The purpose of this study was to examine how the mesio-distal angulation and the length of each tooth changes on panoramic radiograph at different bucco-lingual inclinations. Methods: After constructing an acrylic model based on the mean arch of 30 adults with normal occlusion, the wire was placed in the center of the teeth on the acrylic model. First, the wire was implanted in normal angulation and inclination and a panoramic radiograph taken. After changing the inclination from $I-5^{\circ}\;to\;I+15^{\circ}\;by\;5^{\circ}$, a panoramic radiograph was taken again and the mesio-distal angle and wire length on the panoramic radiograph were assessed. Results: When the wire was implanted at the normal angulation and inclination, the length measured in the panoramic radiograph was magnified $111{\sim}117%$ from the original length in the anterior region and $121{\sim}125%$ in the posterior region. Only the central and lateral incisors showed significant length differences when the inclination was changed from $l-15^{\circ}\;to\;I+15^{\circ}$ at fixed angulation. When the inclination was changed from $l-15^{\circ}\;to\;I+15^{\circ}$, the angulation of most teeth on panoramic radiograph appeared to be more disto-angulated than in reality, and the lateral incisor and canine showed the largest difference. Only $l-15^{\circ}\;to\;I+15^{\circ}$ groups of premolars and $I+15^{\circ}$ group of molars showed more mesio-angulation than in reality. As the labio(bucco)lingual inclination of all teeth were decreased, tooth angulation in the panoramic radiograph appeared to be more disto-angulated. Conclusion: The labio-liugual inclination of teeth should be considered because it affects panoramic image of teeth, such as length of incisors and angulation of other teeth.

파노라마 방사선 사진은 치아 및 주위 조직에 대한 많은 정보를 제공해 주며 교정치료 동안에도 치근의 근원심 경사도나 길이 평가를 위해 흔히 이용되고 있지만 파노라마 방사선 사진에서 보이는 치아의 근원심 각도와 길이는 순(협)설 경사도에 의해 영향을 받는 것으로 알려져 있다. 따라서 본 연구에서는 치아의 근원심 경사도를 정상교합자의 평균 근원심 각도로 유지하면서 순(협)설 경사도만 변화시킬 때 파노라마 방사선 사진에서 각 치아의 근원심 경사도와 길이가 어떻게 변화되는지 알아보고자 하였다. 성인 정상 교합자 30명의 평균 악궁을 기초로 하여 아크릴 모델을 제작한 후 치아를 대신하는. 와이어를 정상 근원심 및 순(협)설 경사도$(I^{\circ})$로 식립하고 여기에 순(협)설 경사도 만 $I-15^P{\circ}$에서 $I+15^{\circ}$까지 $5^{\circ}$씩 변화시켜 파노라마 방사선 사진을 촬영한 후 방사선 사진에 나타난 와이어의 길이와 각도를 각각 계측하였다. 와이어를 정상 근원심 및 순(협)설 각도로 식립했을 때 방사선 사진에서 계측된 길이는 중절치, 측절치, 견치의 경우 실제 길이의 $111%{\sim}117%$의 확대율을 보였고, 소구치와 대구치에서는 $121%{\sim}125%$의 확대율을 보였다. 이 때 근원심 경사도는 그대로 유지하면서 순(협)설 경사도만 $I-15^{\circ}$(순측경사)에서 $I+15^{\circ}$ (설측경사)로 변화시킨 경우 중절치 (p<0.01)와 측절치 (p<0.05)에서만 유의한 확대율 증가를 보였다. 파노라마 방사선 사진에서 치아의 경사도는 대부분 실제 근원심 경사도보다 더 크게 즉 원심경사된 것으로 계측되었고, 이러한 원심경사 경향은 측절치와 견치에서 가장 크게 나타났으며, 제1, 2소구치의 $I+10^{\circ},\;I+15^{\circ}$ 그룹과 제1, 2대구치의 $I+15^{\circ}$ 그룹에서만 실제 근원심 각도보다 더 작게, 즉 근심 경사된 것으로 계측되었다. 또한 순(협)설 경사도의 변화에 따라 파노라마 방사선 사진에서 모든 치아의 근원심 각도가 유의한 변화를 보였는데, 순(협)설 경사도가 작아질수록, 즉 순(협)측 경사될수록 파노라마 방사선 사진에서 더 원심경사되어 나타났다. 따라서 파노라마 방사선 사진에서 중절치와 측절치의 치아 길이와 모든 치아의 근원심 경사도를 평가할 때 치아의 순(협)설 경사도에 따라 영향을 받기 때문에 이를 고려해야 할 것이다.

Keywords

References

  1. Paatero YV. A new tomographical method for radiographing curved outer surfaces. Acta radiol 1949;32: 177-84 https://doi.org/10.3109/00016924909138785
  2. Hatasaka HH. A radiographic study of roots in extraction sites. Angle Orthod 1976;46:64-8
  3. Mayoral G. Treatment results with light wires studied by panoramic radiography. Am J Orthod 1982;8 1 :489-97
  4. Jarabak JR Fizzell JA. Technique and treatment with light-wire edgewise appliances.' St Louis: Mosby; 1972. p.277-379
  5. Casko JS, Vaden JL, Kokich VG, Damone J, James RD, Cangialosi TJ, et al. Objective grading system for dental casts and panoramic radiographs. American board of orthodontics. Am J Orthod Dentofacial Orthop 1998;114:589-99 https://doi.org/10.1016/S0889-5406(98)70179-9
  6. Graber TM. Panoramic radiography in orthodontic diagnosis. Am J Orthod 1967;53:799-821 https://doi.org/10.1016/0002-9416(67)90088-7
  7. Hauck RM. Documentation of tooth movement by means of panoral radiography. Am J Orthod 1970;57:386-92 https://doi.org/10.1016/S0002-9416(70)90220-4
  8. Tronje G, Welander U, McDavid WD, Morris CR Image distortion in rotational panoramic radiography III. Inclined objects. Acta Radiol Diagn (Stockh) 1981;22:585-92 https://doi.org/10.1177/028418518102200513
  9. Philip RG, Hurst RV. The cant of the occlusal plane and distortion in the panoramic radiograph. Angle Orthod 1978;48:3 17-23
  10. Lucchesi MV, Wood RE, Nortje CJ. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am J Orthod Dentofacial Orthop 1988;94:303-10 https://doi.org/10.1016/0889-5406(88)90055-8
  11. Samfors KA, Welander U. Angle distortion in narrow beam rotation radiography. Acta Radiol Diagn (Stockh) 1974;15:570-6 https://doi.org/10.1177/028418517401500513
  12. Mckee IW, Williamson PC, Lam EW, Heo G, Glover KE, Major PW. The accuracy of 4 panoramic units in the projection of mesiodistal tooth angulations. Am J Orthod Dentofacial Orthop 2001;121: 166-75 https://doi.org/10.1067/mod.2002.119435
  13. Vlaskalic V, Boyd RL, Baumrind S. Etiology and sequelae of root resorption. Semin Orthod 1998;4: 124-31 https://doi.org/10.1016/S1073-8746(98)80009-1
  14. Rejebian GP. A statistical correlation of individual tooth size distortions on the orthopantomographic radiograph. Am J Orthod 1979;75:525-34 https://doi.org/10.1016/0002-9416(79)90071-X
  15. Tronje G, Eliasson S, Julin P, Welander U. Image distortion in rotational panoramic radiography II. Vertical distances. Acta Radiol Diagn (Stockh) 1981 ;22:449-55 https://doi.org/10.1177/028418518102200409
  16. Wyatt DL, Farman AG, Orbell GM, Silveira AM, Scarfe WC. Accuracy of dimensional and angular measurements from panoramic and lateral oblique radiographs. Dentomaxillofac Radiol 1995;24: 225-31 https://doi.org/10.1259/dmfr.24.4.9161166
  17. Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: Periapical vs panoramic films. Angle Orthod 2001;71: 185-9
  18. Cohen S, Bums RC. Pathways of the pulp. St Louis: Mosby; 2003. p.151
  19. Ash MM. Wheeler's Dental anatomy physiology, and occlusion. Pennsylvania: Saundee Company; 1984. p.387-92
  20. Burson SD, Farman AG, Kang BC. Comparison of four panoramic dental radiographic systems for tooth angulation measurement accuracy under different tolerances. Korean J Oral Maxillofac Radiol 1994;24:3 17-26
  21. Scarfe WC, Nummikoski P, McDavid WD, Welander U, Tronje G. Radiographic interproximal angulations: Implications for rotational panoramic radiography. Oral Surg Oral Med Oral Pathol 1993;76: 664-72 https://doi.org/10.1016/0030-4220(93)90079-J
  22. McDavid WD, Tronje G, Welander U. A method to maintain a constant magnification factor throughout the exposure of rotational panoramic radiographs. Dentomaxillofac Radiol 1989;18:160-8 https://doi.org/10.1259/dmfr.18.4.2640447
  23. Martinez-Cruz S, Manson-Hing LR. Comparison of focal trough dimensions and form by resolution measurements in panoramic radiography. J Am Dent Assoc 1987;114:639-42 https://doi.org/10.14219/jada.archive.1987.0139
  24. Thanyakarn C, Hansen K, Rohlin M, Akesson L. Measurements of tooth length in panoramic radiographs. I. The use of indicators. Dentomaxillofac Radiol 1992;21:26-30 https://doi.org/10.1259/dmfr.21.1.1397447