Dual Insecticidal Activity of Spodoptera-Toxic Bacillus thuringiensis Strain Transformed with Lepidopteran-Specific Cry Toxin

  • Kang, Joong-Nam (Department of Agricultural Biotechnology, Seoul National University) ;
  • Rob, Jong-Yul (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Sang-Chul (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Koh, Sang-Hyun (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Chung, Yeong-Jin (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Kim, Yang-Su (Department of Agricultural Biotechnology, Seoul National University) ;
  • Wang, Yong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Hee-Kyu (Department of Agricultural Biotechnology, Seoul National University) ;
  • Li, Ming-Shun (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Jae-Young (Department of Agricultural Biotechnology, Seoul National University) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.06.30

Abstract

The E. coli-B. thuringiensis shuttle vector for expression of cry1Ac, pHT1K-1Ac plasmid was introduced into acrystalliferous B. thuringiensis Cry-B and Spodoptera toxic STB-3 strain. The presence of a recombinant plasmid in transformants after electroporation was confirmed by PCR. The 1K-1Ac/Cry-B (Cry-B transformant) and 1K-1Ac/STB-3 (STB-3 transformant) produced bipyramidal-shaped parasporal inclusion that was 130 kDa in size as like B. thuringiensis subsp. kurstaki HD-73. In P. xylostella bioassay, these transformants showed significantly high toxicity than the wild-type recipients and further, in case of B. thuringiensis STB-3 transformant still had original Spodoptera toxicity. These results suggested that the pHT1K could be successfully applied for generating individual B. thuringiensis strains that produce various combinations of insecticidal proteins to expand their host spectrum and enhance insecticidal activity.

Keywords

References

  1. Adang, M.J., M.J. Staver, T.A. Rocheleau, J. Leighton, R.F. Barker and D.V. Thompson. 1985. Characterized fulllength and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289-300 https://doi.org/10.1016/0378-1119(85)90184-2
  2. Arantes, O. and D. Lereclus. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115-119 https://doi.org/10.1016/0378-1119(91)90495-W
  3. Baum, J.A., D.M. Coyle, M.P. Gilbert, C.S. Jany and C. Gawron-Burke. 1990. Novel cloning vectors for Bacillus thuringiensis. Appl. Environ. Microbiol. 56: 3420-3428
  4. Chang, C., S.M. Dai, R. Frutos, B.A. Federici and S.S. Gill. 1992. Properties of a 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expressed in B. thuringiensis subsp. kurstaki by using the shuttle vector pHT3101. Appl. Environ. Microbiol. 58: 507-512
  5. Chang, J.H., Y.H. Je, J.Y. Roh, H.W. Park, B.R. Jin, D.W. Lee, S.H. Kim, Z. Yang and S.K. Kang. 1999. Isolation and characterization of a strain of Bacillus thuringiensis serovar kenyae encoding only $\delta$-endotoxin Cry1E. Appl. Ent. Zoo I. 34: 379-382 https://doi.org/10.1303/aez.34.379
  6. Crickmore, N., C. Nicholls, D.J. Earp, T.C. Hodgman and D.J. Ellar. 1990. The construction of Bacillus thuringiensis strains expressing novel entomocidal $\delta$-endotoxin combinations. Biochem. J. 270: 133-136 https://doi.org/10.1042/bj2700133
  7. Crickmore, N., D.R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo and D.H. Dean 2006. Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_ Crickmore/Bt/
  8. Finney, D.J. 1971. Probit analysis, 3rd ed, vol. Cambridge University Press, Cambridge, UK
  9. Gammon, K., G.W. Jones, S.J. Hope, C.M. de Oliveira, L. Regis, M.H. Silva Filha, B.N. Dancer and C. Berry. 2006. Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus sphaericus. Appl. Environ. Microbiol. 72: 1766-1770 https://doi.org/10.1128/AEM.72.3.1766-1770.2006
  10. Gonzalez, J.M., Jr., B.J. Brown and B.C. Carlton. 1982. Transfer of Bacillus thuringiensis plasm ids coding for $\delta$-endotoxin among strains of B. thuringiensis and 8. cereus. Proc. Natl. Acad. Sci. USA. 79: 6951-6955
  11. Kalman, S., K.L. Kiehne, N. Cooper, M.S. Reynoso and T. Yamamoto. 1995. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl. Environ. Microbiol. 61: 3063-3068
  12. Kang, J.N., Y.-S. Kim, Y. Wang, H. Choi, M.S. Li, S.C. Shin, B.R. Jin, J.Y. Roh, J.Y. Choi and Y.H. Je. 2005. Construction of a high-efficiency shuttle vector containing the minimal replication origin of Bacillus thuringiensis. Int. J. Indust. Entomol. 11: 125-127
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lambert, B. and M. Peferoen. 1992. Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42: 112-122 https://doi.org/10.2307/1311652
  15. Lecadet, M.M., J. Chaufaux, J. Ribier and D. Lereclus. 1992. Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl. Environ. Microbiol. 58: 840-849
  16. Lereclus, D., O. Arantes, J. Chaufaux and M.-M. Lecadet. 1989. Transformation and expression of a cloned $\delta$-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211-218
  17. Masson, L., G. Prefontaine and R. Brousseau. 1989. Transformation of Bacillus thuringiensis vegetative cells by electroporation. FEMS Microbiol. Lett. 51: 273-277
  18. Mesrati, L.A., M.D. Karray, S. Tounsi and S. Jaoua. 2005. Construction of a new high-copy number shuttle vector of Bacillus thuringiensis. Lett. Appl. Microbiol. 41: 361-366 https://doi.org/10.1111/j.1472-765X.2005.01733.x
  19. Roh, J.Y., M.S. Li, J.H. Chang, J.Y. Choi, H.J. Shim, S.C. Shin, K.S. Boo and Y.H. Je. 2004. Expression and characterization of a recombinant CrylAc crystal protein with enhanced green fluorescent protein in acrystalliferous Bacillus thuringiensis. Lett. Appl. Microbiol. 38: 393-399 https://doi.org/10.1111/j.1472-765X.2004.01505.x
  20. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. BioI. Rev. 62: 775-806
  21. Schnepf, H.E. and H.R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA. 78: 2893-2897
  22. Stahly, D.P., D.W. Dingman, LA Bulla, Jr. and A.I. Aronson. 1978. Possible origin and function of the paraspora1 crystal in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84: 581-588 https://doi.org/10.1016/0006-291X(78)90745-3
  23. Visser, B., T. van der Salm, W. van den Brink and G. Folkers. 1988. Genes from Bacillus thuringiensis entomocidus coding for insect-specific crystal proteins. Mol. Gen. Genet. 212: 219-224 https://doi.org/10.1007/BF00334688
  24. Yue, C., M. Sun and Z. Yu. 2005. Broadening the insecticidal spectrum of lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol. Bioeng. 91: 296-303 https://doi.org/10.1002/bit.20493