DOI QR코드

DOI QR Code

A Study on Improvement of Interfacial Adhesion Energy of Inkjet-printed Ag Thin film on Polyimide by CF4 Plasma Treatment

CF4플라즈마 처리에 의한 잉크젯 프린팅 Ag박막과 폴리이미드 사이의 계면파괴에너지 향상에 관한 연구

  • Park, Sung-Cheol (School of Material Science and Engineering, Andong National University) ;
  • Cho, Su-Hwan (Central R&D Institute, Samsung Electro-mechanics) ;
  • Jung, Hyun-Cheol (Central R&D Institute, Samsung Electro-mechanics) ;
  • Joung, Jae-Woo (Central R&D Institute, Samsung Electro-mechanics) ;
  • Park, Young-Bae (School of Material Science and Engineering, Andong National University)
  • Published : 2007.04.27

Abstract

The effect of $CF_4$ plasma treatment condition on the interfacial adhesion energy of inkjet printed Ag/polyimide system is evaluated from $180^{\circ}$ peel test by calculating the plastic deformation energy of peeled metal films. Interfacial fracture energy between Ag and as-received polyimide was 5.5 g/mm. $CF_4$ plasma treatment on the polyimide surface enhanced the interfacial fracture energy up to 17.6 g/mm. This is caused by the increase in the surface roughness as well as the change in functional group of the polyimide film due to $CF_4$ plasma treatment on the polyimide surface. Therefore, both the mechanical interlocking effect and the chemical bonding effect are responsible for interfacial adhesion improvement in ink jet printed Ag/polyimide systems.

Keywords

References

  1. Z. Liu and Y. Su, K. Varahramyan, Thin Solid Films, 478, 275 (2005) https://doi.org/10.1016/j.tsf.2004.11.077
  2. Y. B. Park, I. S. Park and J. Yu, Mater. Sci. Eng., A266, 261 (1999) https://doi.org/10.1016/S0921-5093(98)01117-4
  3. Y. B. Park and J. Yu, Met. Mater. Int., 7(2), 123 (2001) https://doi.org/10.1007/BF03026950
  4. J. Y. Song and J. Yu, Acta Mater., 50, 3985 (2002) https://doi.org/10.1016/S1359-6454(02)00197-0
  5. M. H. Kim and K. W. Lee, Met. Mater. Int., 12(5), 425 (2006) https://doi.org/10.1007/BF03027710
  6. S. H. Kim, S. W. Na, N. -E. Lee, Y. W. Nam and Y. H. Kim, Surf. Coat. Technol., 200, 2072 (2005) https://doi.org/10.1016/j.surfcoat.2005.05.021
  7. S. B. Lee, Y. K. Kim and J. S. Kim, Kor. J. Mater. Res., 16(9), 543 (2006) https://doi.org/10.3740/MRSK.2006.16.9.543
  8. K-S. Kim and N. Aravas, Int. J. Sol. Struct., 24(4), 417 (1988) https://doi.org/10.1016/0020-7683(88)90071-6
  9. A. J. Kinloch, C. C. Lau and J. G. Williams, Int. J. Frac., 66(1), 45 (1994) https://doi.org/10.1007/BF00012635
  10. C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, U. S. A., (1978)
  11. O. D. Greenwood, R. D. Boyd, J. Hopkins and J. P. S. Badyal, J. Adhesion Sci. Techol., 9(3), 311 (1995) https://doi.org/10.1163/156856195X00527
  12. L. J. Gerenser, J. Vac. Sci. Technol. A, 6(5), 2897 (1988) https://doi.org/10.1116/1.575448
  13. S. C. Park, S. W. Cho, H. C. Jung, J. W. Joung and Y. B. Park, Proceeding of the 2006 fall technical symposium on microelectronics and packaging, 29 (2006)
  14. Adley F. Rubira, James D. Rancourt, Maggie L. Caplan, Anne K. St. Clair and Larry T. Taylor, Chem. Mater., 6, 2351 (1994) https://doi.org/10.1021/cm00048a022
  15. D. Hu and H. Chen, J. Mater. Sci., 27, 5262 (1992) https://doi.org/10.1007/BF02403827
  16. Y. H. Kim, Master Thesis., Seoul National University, (2006)

Cited by

  1. Fabrication of RF Circuit Structures on a PCB Material Using Inkjet Printing-Electroless Plating and the Substrate Preparation for the Same vol.2, pp.1, 2009, https://doi.org/10.5104/jiepeng.2.116
  2. Inkjet-printing- and electroless-plating- based fabrication of RF circuit structures on high-frequency substrates vol.19, pp.8, 2009, https://doi.org/10.1088/0960-1317/19/8/085020