An Autonomous Navigation System for Unmanned Underwater Vehicle

무인수중로봇을 위한 지능형 자율운항시스템

  • 이영일 (경상대학교 컴퓨터과학과) ;
  • 정희 (경상대학교 컴퓨터과학과) ;
  • 김용기 (경상대학교 컴퓨터과학과)
  • Published : 2007.04.15

Abstract

UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

무인수중로봇은 인간의 직접적인 접근이 제한되는 위험한 지역을 운항하기 때문에 인식, 결정, 그리고 행동과 같은 영역전문가의 고유능력을 수행하는 지능형 제어소프트웨어를 반드시 탑재해야한다. 본 논문에서는 다양한 무인항체에 적용 가능한 RVC 지능시스템 모델을 제안하며, 또한 충돌회피시스템, 항해 계획시스템, 그리고 충돌위험도산출시스템으로 구성된 무인수중로봇을 위한 지능형 자율운항시스템을 개발 한다. 충돌회피시스템에서는 퍼지관계곱에 기반한 장애물회피 알고리즘을 제안하는데 이는 생성경로 관점의 안전성과 효율성을 보장한다. 그리고 항해계획시스템에서는 폴리선을 이용한 항로계획 알고리즘을 제안 한다. 제안된 지능형 자율운항시스템의 성능검증을 위해 환경관리자, 객체, 그리고 3차원뷰어로 구성된 시뮬레이션시스템을 개발하여 시뮬레이션을 수행한다.

Keywords

References

  1. Ong, S. M., A Mission Planning knowledge-based system with Therr-Dimensional Path Optimization for the NPS Model 2 Autonomous Underwater Vehicle, Master's Thesis, Naval Postgraduate school, 1990
  2. Wilson, S. W., A, Mechanism for context-sensitive reasoning, Technical Report 90-68, Department of Computer Science, Univ. of New Hampshire, 1990
  3. Agre, P. E. and Chapman, D., Pengi, 'An Implementation of a theory of activity,' In Proceedings of the Sixth National Conference on Artificial Intellinence, 1987
  4. Cliff, D., Computational neuroethology, 'A provisional manifesto,' In Meyer, Proceedings of the First International Conference on Simulation of Adaptive Behavior, The MIT Press, 1991
  5. Brooks, R. A., 'A robust layered control system for a mobile robot,' IEEE Journal of Robotics and Automation, 1986
  6. Roy M. Turner, D.Richard Blidberg, Steven G. Chappell, and James C. Jalbert, 'Generic bahaviors: An approach to modularity in intelligent systems control,' Proceedings of the 8th International Symposium on Unmanned Untethered Submersible Technology, 1993
  7. Ronald C. Arkin, 'Towards the Unification of Navigational Planning and Reactive Control,' the AAAI Spring Symposium on Robot Navigation, Mar. 1989
  8. Scerri, P. and Reed N. 'Requirements for a General Agent Architecture for Agent-Based Simulation Environments.' Agents'99 Workshop on Autonomy Control Software. May, 1999
  9. Lee Y I., Kim Y G, Ladislav J Kohout, 'An Intelligent Collision Avoidance System for AUVs using Fuzzy Relational Products,' Information Sciences, Vol. 158, 2004 https://doi.org/10.1016/j.ins.2003.07.003
  10. Bandler, W., and Kohout, L. J., 'Fuzzy Relational Products asa Tllo for Analysis and Synthesis of the Behaviour of Complex natural and Artificial System,' in: Wang, S. K, and Chang, P. P. eds., Fuzzy Sets: Theory and Application to Analysis and Information Systems, Plenum Press, New York, pp. 341-367, 1980
  11. Bandler, W., and Kohout, L. J., 'Semantics of Implication Pperators and Fuzzy Relational Products,' Intl. Journal of Man-Machine Studies, 1980
  12. Kohout, L. J., Keravnou, E., and Bandler, W., 'Automatic Documentary Information Retrieval by Means of Fuzzy Relational Produtcs,' In Caines, B. R., Zadeh, L. A. and Zimmermann, H. J., editors, Fuzzy Sets in Decision Analysis, North-Holland, Amsterdam, pp. 308-404, 1984
  13. Bandler, W., and Kohout L. J., 'Fuzzy Power Sets and Fuzzy Implication Operator,' Fuzzy Set and Sysetm4, pp. 13-30, 1980 https://doi.org/10.1016/0165-0114(80)90060-3
  14. C. Vasudevan and K. Ganesan, 'Case-Based path Planning for Autonomous Underwater Vehicles,' Underwater Robots, Yuh, Ura and Bekey (Eds.), Kluwer AcademicPublishers, Boston, pp. 1-15, 1996
  15. Oommen, B. J. Iyengar, S. S., Rao, S. V. N., and Kashyap, R. L., 'Robot Navigation in Unknown Terrains Using Learned Visibility Graphs. Part I : The Disjoint Convex Obstacle case,' IEEE journal of Robotics and Automation, v. RA-3(6), pp.672-681, 1987
  16. 김은경, '충돌회피를 위한 충돌위험도 결정 시스템', 한국퍼지 및 지능시스템 학회 논문지, vol. 2, pp. 524-527, 2001
  17. Hara, K. and Hammer, A., 'A safe Way of Collision Avoidance Maneuver based on Maneuvering Standard using Fuzzy Reasoning Model,' MARSIM 93, St. John's, 1993
  18. 김현식, 지능 제어를 이용한 Underwater Flight Vehicle의 심도 제어에 관한 연구, 부산대학교 공학박사 논문, 2001