DOI QR코드

DOI QR Code

A STUDY OF A NUCLEAR HYDROGEN PRODUCTION DEMONSTRATION PLANT

  • Published : 2007.04.30

Abstract

The current energy supply system is burdened by environmental and supply problems. The concept of a hydrogen economy has been actively discussed worldwide. KAERI has set up a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. The technological gap to meet this goal was identified during the past few years. The hydrogen production process, a process heat exchanger, the efficiency of an I/S thermochemical cycle, the manufacturing of components, the analysis tools of VHTR, and a coated particle fuel are key areas that require urgent development. Candidate NHDD plant designs based on a 200 MWth VHTR core and I/S thermochemical process have been studied and some of analysis results are presented in this paper.

Keywords

References

  1. 'Climate Change 2007: The Physical Science Basis - Summary for Policymakers,' IPCC, 2007
  2. 'The Hydrogen Economy,' The National Academy Press, 2004
  3. M. Richards and A. Shenoy, 'H2-MHR Pre-conceptual Design Summary,' Nucl. Eng. and Technology, 39(1), 2007.2 https://doi.org/10.5516/NET.2007.39.1.001
  4. J. Norman et al., 'Thermochemical water-splitting cycle bench-scale investigations and process engineering,' GA-A16713, 1982.5
  5. H. Nakajima et al., 'A study on a closed-cycle hydrogen production by thermochemical water-splitting IS process,' Proc. of ICONE-7, Tokyo, Japan, April 1999
  6. S. Goldstein et al., 'Upper bound and best estimate of the efficiency of the iodine sulphur cycle,' Int. J. of Hydrogen Energy, 30, 619, 2005 https://doi.org/10.1016/j.ijhydene.2004.06.005
  7. S. Herring, 'High temperature electrolysis using solid oxide fuel cell technology,' Workshop on Large Scale production of hydrogen from nuclear power, Sandiego, 2002.5
  8. E. Hoashi et al., 'Simulation modeling of a tubular type solid oxide electrolysis cell for hydrogen production in a nuclear power plant,' ICAPP-06, Reno, NV, 2006.6
  9. D.F. McLaughlin et al., 'Revised capital and operating HyS hydrogen production cost,' ICAPP-06, Reno, NV, 2006.6
  10. J.W. Park et al., 'Effects of ion beam mixing of silicon carbide film deposited onto metallic materials for application to nuclear hydrogen production,' Journal of Nuclear Materials, in press. 2007 https://doi.org/10.1016/j.jnucmat.2007.01.129
  11. J.W. Park et al., Coating and Ion Beam Mixing Apparatus and Method to Enhance the Corrosion Resistance of the Materials at the Elevated Temperature Using the Same, PCT Patent submitted, PCT/KR2006/0042366, 2006
  12. Y.W. Kim et al., High Temperature and High Pressure Corrosion Resistant Process Heat Exchanger for a Nuclear Hydrogen Production System, R.O.K. Patent submitted 10-2006-0124726, 2006
  13. S.D. Hong, S.D. et al., 'Design of a Small Scale High Temperature Gas Loop for Process Heat Exchanger Design Tests,' ICAPP-06, Reno, NV, 2006.6
  14. G.E. Besenbruch, G.E., 'General Atomic Sulfur-Iodine Thermochemical Water-Splitting Process,' Am. Chem. Soc., Div. Pet. Chem., Prepr. 271, 48, 1982
  15. L.C. Brown, L.C., et al., 'High Efficiency Generation of Hydrogen Fuels Using Nuclear Power,' GA-A24285, 2003.6
  16. Y.J. Shin, 'Thermal Efficiency of EED-embedded Sulfur-Iodine Thermochemical Cycle,' Calculation Note No. NHDD-KA07-HP-001, 2007.1
  17. S. Fazluddin et al., 'The Use of Advanced Materials in VHTR's,' 2nd Int. Topical Meeting on High Temperature Reactor Technology, Beijing, China, 2004.9
  18. W.G. Kim et al., 'Creep Properties of Hastelloy-X Alloy for the High Temperature Gas Cooled Reactor' Key Engineering Materials, vol. 316-328, pp.477-482, 2006
  19. Moh. Nagah Ramadan, 'Measurement of the Gas-outlettemperatures and the Flow Behavior of Spheres in the Flowing Core of a Pebble-bed Reactor with a New Developed MeasuringSystem,' KFJ Internal Report JUL-1044-RG, Kernforschungsanlage Julich, 1974 (In German)
  20. W.J. Lee, H. S. Lim, S. W. Lee, and J. Chang, 'Modeling Requirements for VHTR Thermo-Fluid and Safety Analysis Code,' Proceedings of Korea Nuclear Society Fall Meeting,2004
  21. W.J. Lee, T.Y.C. Wei, R.R. Schultz, et. al, 'Generation of Preliminary PIRT (Phenomena Identification and Ranking Table) for Very High Temperature Gas-Cooled Reactors', KAERI/TR-3050/2005, INL/EXT-05-00829, ANL-GenIV-066, KAERI, 2005.9
  22. J.M. Noh et. al., 'An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores', Trans. of the Korean Nuclear Society Spring Meeting, Chuncheon, Korea, May 2006
  23. J, M. Noh et. al., 'Development of a Computer Code System for the Analysis of VHTR Cores,' ICAPP-06, Reno, NV, 2006.6
  24. K.S. Kim et al., 'LIBERTE (Linear Boltzmann Transport Equation Solver for Reactor Physics and Engineering) Methodology', KAERI/TR-2304/2002, KAERI, 2002.11
  25. K.S. Kim et al., 'Development of Two Step Procedure for the Prismatic VHTR Physics Analysis', PHYSOR2006, Vancouver, Canada, 2006.9
  26. W.J. Lee, J.J. Jeong, S.W. Lee, and J. Chang, 'Development of MARS-GCR/V1 for Thermal-Hydraulic Safety Analysis of Gas-Cooled Reactor Systems', Nuclear Engineering and Technology, 37(6), 2005
  27. H.S. Lim and H. C. No, 'GAMMA Multidimensional Multicomponent Mixture Analysis to Predict Air Ingress Phenomena in an HTGR,' Nuclear Science and Engineering, vol. 152, pp. 87-97, Jan. 2006 https://doi.org/10.13182/NSE06-5
  28. K. Fukuda et al., 'Research and Development of HTTR Coated Particle Fuel' J. Nucl. Sci. Technology 28, 570, 1991 https://doi.org/10.3327/jnst.28.570
  29. H. Nabielek, et al., 'Development of advanced HTR fuel elements,' Nucl. Eng. Des. 121, 199, 1990 https://doi.org/10.1016/0029-5493(90)90105-7
  30. C. Tang et al., 'Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor,' X. Ni, Nucl. Eng. Design, 218,91, 2002 https://doi.org/10.1016/S0029-5493(02)00201-7
  31. K. Sawa, S. Suzuki, S. Shiozawa, 'Safety criteria and quality control of HTTR fuel,' Nucl. Eng. Design, 208, 305, 2001 https://doi.org/10.1016/S0029-5493(01)00358-2
  32. D. Petti et al., 'Key difference in the Fabrication, Irradiation and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance', INEEL, INEEL Report INEEL/Ext-02-00300, Jun. 2002
  33. H. Nabielek et al, 'The Performance of High-Temperature Reactor Fuel Particles at Extreme Temperatures,' Nucl. Technol. 84, 62, 1989
  34. Y. Kurata, K. Ikawa and K. Iwamoto, 'The effect of heat treatment on density and structure of SiC,' J. Nucl. Mater. 92, 351, 1980 https://doi.org/10.1016/0022-3115(80)90122-1
  35. G.H. Reynolds, J.C. Janvier J.L. Kaae and J.P. Morlevat, 'Irradiation behavior of experimental fuel particles containing chemically vapor deposited zirconium carbide coatings,' J. Nucl. Mater. 62, 9, 1976 https://doi.org/10.1016/0022-3115(76)90279-8
  36. P. Wagner, 'High Temperature Fuel Technology for Nuclear Process Heat: ZrC-Containing Coated Particle Fuels and High-Density Graphite Fuel Matrices,' Los Alamos NationalLaboratory, Report LA-6984, 1977
  37. T. Ogawa, K. Ikawa, K. Fukuda, S. Kashimura and K. lwamoto, in Nuclear Fuel Performance, p. 163, BNES, London, 1985
  38. K. Minato, et al., 'Fission product palladium-silicon carbide interaction in HTGR fuel particles,' J. Nucl. Mater. 172, 184, 1990 https://doi.org/10.1016/0022-3115(90)90437-R
  39. T. Ogawa and K. Ikawa, 'Diffusion of metal fission products in $ZrC_{1.0}$,' J. Nucl. Mater. 105, 331 1982 https://doi.org/10.1016/0022-3115(82)90391-9
  40. R.C. Potter, et al., 'Gas Turbine-Modular Helium Reactor (GTMHR) Conceptual Design Description,' Report 910720, Revision 1, General Atomics, Fuly 1996
  41. 'Evaluation of High Temperature Gas Cooled Reactor Performance,' IAEA, IAEA-TECDOC-TBD, December 2004
  42. E. Teuchert, et. al., 'VSOP('94) Computer Code System for Reactor Physics and Fuel Cycle Simulation,' FZJ Internal Report, Juel-2897, 1994
  43. C.K. Jo and J. M. Noh, 'Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR', Trans. of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 2007
  44. C.K. Jo, et. al., 'Pre-conceptual Core Design and Safety Analysis of 200MWth Pebble Bed-type VHTR for Hydrogen Production', Intl. Workshop on Next Generation Regional Energy System Development (IWRES07), Seoul, Korea, Jan. 2007
  45. H.S. Lim, H. C. No, 'GAMMA Multidimensional Multicomponent Mixture Analysis to Predict Air Ingress Phenomena in an HTGR,' Nuclear Science and Engineering, vol. 152, pp. 87-97, Jan. 2006 https://doi.org/10.13182/NSE06-5
  46. C.H. Kim, S. W. Lee, H. S. Lim and W. J. Lee, 'Preliminary Evaluation of Operational Performance with Two Reactor Design Options for NHDD Application,' Proceedings of Korea Nuclear Society Fall Meeting, 2005
  47. S.W. Lee, J. J. Jeong and W. J. Lee, 'Preliminary Sensitivity Study on Gas-Cooled Reactor for NHDD System Using MARS-GCR,' Proceedings of Korea Nuclear Society Fall Meeting, 2005
  48. ASME Section III, Subsection NH, Class 1 Components in Elevated Temperature Service, 2004
  49. H.S. Lim and W. J. Lee, 'Preliminary Low Pressure Conduction Cooldown Analysis with Sensitivity on the Operating Conditions,' Proceedings of Korea Nuclear Society Fall Meeting, 2005

Cited by

  1. A Surface Modification of Hastelloy X by a SiC Coating and an Ion Beam Irradiation for a Potential use for Iodine-Sulfur Cycle in Nuclear Hydrogen Production System vol.1125, pp.1946-4274, 2008, https://doi.org/10.1557/PROC-1125-R06-08
  2. Preliminary application of the draft code case for alloy 617 for a high temperature component vol.22, pp.5, 2008, https://doi.org/10.1007/s12206-008-0118-1
  3. Computational Fluid Dynamics Assessment of the Local Hot Core Temperature in a Pebble-Bed Type Very High Temperature Reactor vol.131, pp.1, 2009, https://doi.org/10.1115/1.2983136
  4. Preliminary Design Analysis of Hot Gas Ducts for the Nuclear Hydrogen System vol.131, pp.1, 2009, https://doi.org/10.1115/1.2983141
  5. Corrosion of the Materials in Sulfuric Acid vol.131, pp.4, 2009, https://doi.org/10.1115/1.3095808
  6. Production Facility and an Overpressure Prediction Using Correlations and a CFD Analysis for the JAEA Explosion Test in an Open Space vol.166, pp.1, 2009, https://doi.org/10.13182/NT09-A6971
  7. Evaluation of Creep-Fatigue Damage for Hot Gas Duct Structure of the NHDD Plant vol.132, pp.3, 2010, https://doi.org/10.1115/1.4000728
  8. Development of the Fission Product Release Analysis Code COPA-FPREL vol.170, pp.1, 2010, https://doi.org/10.13182/NT10-A9461
  9. An Evaluation of Creep-Fatigue Damage for the Prototype Process Heat Exchanger of the NHDD Plant vol.133, pp.5, 2011, https://doi.org/10.1115/1.4003466
  10. A Practical Method for Whole-Core Thermal Analysis of a Prismatic Gas-Cooled Reactor vol.177, pp.3, 2012, https://doi.org/10.13182/NT12-A13480
  11. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop vol.2012, pp.1687-6083, 2012, https://doi.org/10.1155/2012/312080
  12. An improved methodology for determining tensile design strengths of Alloy 617 vol.26, pp.2, 2012, https://doi.org/10.1007/s12206-011-1024-5
  13. vol.51, pp.9, 2012, https://doi.org/10.1021/ic300014a
  14. Macroscopic Structural Analysis on a 10 kW Class Lab-Scale Process Heat Exchanger Prototype under a High-Temperature Gas Loop Condition vol.05, pp.01, 2013, https://doi.org/10.4236/eng.2013.51A017
  15. Hydrogen production using high temperature reactors: an overview vol.1, pp.1, 2013, https://doi.org/10.12989/eri.2013.1.1.013
  16. Structural Integrity Evaluation of a Lab-Scale PCHE Prototype under the Test Conditions of HELP vol.2013, pp.1687-6083, 2013, https://doi.org/10.1155/2013/520145
  17. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals vol.27, pp.8, 2013, https://doi.org/10.1007/s12206-013-0616-7
  18. Improved methodology for determining tensile elastic and plastic strain components of alloy 617 vol.28, pp.8, 2014, https://doi.org/10.1007/s12206-014-0709-y
  19. Analysis of thermophysical property data of HI x components for I2 crystallizer design in sulfur-iodine process to produce hydrogen vol.33, pp.3, 2016, https://doi.org/10.1007/s11814-015-0212-x
  20. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) vol.35, pp.9, 2011, https://doi.org/10.3795/KSME-A.2011.35.9.1137
  21. High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis - vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1249
  22. Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I) vol.35, pp.11, 2011, https://doi.org/10.3795/KSME-A.2011.35.11.1499
  23. Comparisons of High-Temperature Structural Analysis Results on the Medium-Scale PHE Prototype under the Steady-State and Trip Conditions of a Small-Scale Gas Loop vol.525-526, pp.1662-9795, 2012, https://doi.org/10.4028/www.scientific.net/KEM.525-526.5
  24. Size Effect of PHE Prototype on High-Temperature Structural Integrity vol.525-526, pp.1662-9795, 2012, https://doi.org/10.4028/www.scientific.net/KEM.525-526.461
  25. High-Temperature Structural Analysis on the Small-Scale PHE Prototype vol.525-526, pp.1662-9795, 2012, https://doi.org/10.4028/www.scientific.net/KEM.525-526.465
  26. Macroscopic High-Temperature Structural Analysis of PHE Prototypes Considering Weld Material Properties vol.36, pp.9, 2012, https://doi.org/10.3795/KSME-A.2012.36.9.1095
  27. High-Temperature Structural Analysis of a Small-Scale PHE Prototype - Analysis Considering Material Properties in Weld Zone - vol.36, pp.10, 2012, https://doi.org/10.3795/KSME-A.2012.36.10.1289
  28. High-Temperature Structural Analysis of a Medium-Scale Process Heat Exchanger Prototype vol.36, pp.10, 2012, https://doi.org/10.3795/KSME-A.2012.36.10.1283
  29. Evaluation of Elastic Structural Integrity of a 70 kW Class Lab-Scale PCHE Prototype under the Test Conditions of HELP vol.577-578, pp.1662-9795, 2013, https://doi.org/10.4028/www.scientific.net/KEM.577-578.333
  30. Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-A.2013.37.9.1189