Prioritizing Environmental Risks of Veterinary Antibiotics Based on the Use and the Potential to Reach Environment

사용량과 잠재적 환경 유출 가능성을 기준으로 한 축산용 항생제의 우선순위 결정

  • Received : 2007.01.18
  • Accepted : 2007.02.10
  • Published : 2007.02.28

Abstract

Veterinary antibiotics have been widely used to increase feed efficiency, to prevent disease, and to promote growth as well as to control disease. The antibiotics administered can be excreted through the urine and feces. One of the major routes of veterinary antibiotics entering soil and water environment is via the application of animal manure to agricultural land as an organic fertilizer source. Since little is known about impacts of antibiotics on the environment, this study was conducted to prioritize the veterinary antibiotics based on the consumption and potential to reach the environment. Among 83 veterinary antibiotics consumed in Korea, ten antibiotics were used at the greater dose than 25 Mg in 2004. Potential to reach the environment was determined according to excretion rate after administered to animals and sorption affinity to soil solids after applied to agricultural land. Seventeen antibiotic active ingredients (Ais) were classified as 'High' priority in terms of the potential to reach the environment. An overall priority score was determined by combining priority score based on consumption with the degree of potential environment exposure. Twenty veterinary antibiotic AIs were classified as 'Very high' or 'High' priority requiring detailed assessment. The antibiotic AIs were identified four aminoglycosides, two macrolides, two penicillins, five sulfonamides, three tetracyclines, two quinolones, and two miscellaneous. Eight veterinary antibiotic AIs including amoxicillin, carbadox, chlortetracycline, neomycin, oxytetracycline, sulfamethazine, sulfathiazole, and tylosin were identified to have a greater priority of environmental risk in Korea.

가축 질병의 예방 및 치료뿐만 아니라 사료 이용효율 증대와 생장 촉진을 위하여 축산용 항생제가 쓰여져 왔으며, 이 항생제는 가축분뇨를 통해 배출되어 농경지에 유입될 가능성이 있다. 나아가 용탈과 표면 유거를 거쳐 수계에 도달할 수 있으나, 모든 항생제의 환경 유출 가능성을 검토하는 데에는 많은 시간과 노동력, 예산이 필요하다. 본 연구는 축산용 항생제의 사용량과 잠재적 환경 유출 가능성을 기준으로 우선 순위를 결정하고자 수행되었다. 2004년에 우리 나라에서 판매된 항생제는 83종으로 약 1,400 톤에 달하였으며, 이 가운데 25 톤 이상 사용된 항생제는 10종이었다. 3 톤 이상 쓰인 36 종의 항생제를 대상으로, 가축의 배출율과 토양 흡착 정도를 가지고 잠재적 환경 유출 가능성을 판단하여 17 종을 선발하였다. 축산용 항생제의 사용량과 잠재적 환경 유출 가능성을 종합하여 검토한 결과, amoxicillin과 carbadox, chlortetracycline, neomycin, oxytetracycline, sulfamethazine, sulfathiazole, tylosin 등 8종이 상대적으로 환경으로의 유출 가능성이 높아 금후 정밀한 평가가 요구되었다. 비록 항생제의 가축분뇨로의 배출율과 토양내 동태에 대한 정보가 제한적일지라도, 본 연구에서는 한국에서 쓰이고 있는 축산용 항생제의 사용량과 알려진 항생제의 배출율과 토양 흡착 정도를 바탕으로 환경으로의 유출 가능성이 큰 항생제를 결정하였다.

Keywords

References

  1. Aga, D.S., R. Goldfish, and R. Kulshrestha. 2003. Application of ELISA in determining the fate of tetracyclines in land applied livestock wastes. Analyst. 128:658-662 https://doi.org/10.1039/b301630g
  2. Ash, R., B. Mauck, and M. Morgan. 2002. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emer. Infect. Dis. 8:713-716 https://doi.org/10.3201/eid0807.010264
  3. Boxall, A.B.A., L.A. Fogg, P. Kay, P.A. Blackwell, E.J. Pemberton, and A. Croxford. 2003. Prioritisation of veterinary medicines in the UK environment. Toxicol. Lett. 142:207-218 https://doi.org/10.1016/S0378-4274(03)00067-5
  4. Boxall, A.B.A., P. Kay, P.A. Blackwell, and L.A. Fogg. 2004. Fate of veterinary medicines applied to soils. p. 165-180. In Kummerer, K. (ed.). Pharmaceuticals in the environment. 2nd ed. Springer, Berlin, Germany
  5. Boxall, A.B.A., P.A. Blackwell, R. Cavallo, P. Kay, and J. Tolls. 2002. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett. 131:19-28 https://doi.org/10.1016/S0378-4274(02)00063-2
  6. Breen, K.J., R.E. Bryant, J.D. Levinson, and S. Schenker. 1972. Neomycin studies in man. Studies of oral and enema administration and effect of intestinal ulceration. Ann. Intern. Med. 76:211-218 https://doi.org/10.7326/0003-4819-76-2-211
  7. Burkhardt, M., C. Stamm, C. Waul, H. Singer, and S. Muller. 2005. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J. Environ. Qual. 34:1363-1371 https://doi.org/10.2134/jeq2004.0261
  8. Capleton, A.C., C. Courage, P. Rumsby, P. Holmes, E. Stutt, A.B.A. Boxall, and L.S. Levy. 2006. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile. Toxicol. Lett. 163:213-223 https://doi.org/10.1016/j.toxlet.2005.10.023
  9. Carlson, J.C. and S.A. Mabury. 2006. Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland county, Ontario, Canada. Environ. Toxicol. Chem. 25:1-10 https://doi.org/10.1897/04-657R.1
  10. Dewey, C.E., B.D. Cox, B.E. Straw, E.J. Bush, and S. Hurd. 1999. Use of antimicrobials in swine feeds in the United States. Swine Health Prod. 7:19-25
  11. Gaskins, H.R., C.C. Collier, and D.B. Anderson. 2002. Antibiotics as growth promotants: Mode of action. In Pork Quality and Safety Summit. Natl. Pork Board. Des Moines, IA., USA
  12. Gavalchin, J. and S.E. Katz. 1994. The persistence of fecal borne antibiotics in soil. J. AOAC Internat. 77:481-485
  13. Halling-Sorensen, B., A.M. Jacobsen, J. Jensen, G. Sengelov, E. Vaclavik, and F. Ingerslev. 2005. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field scale study in southern Denmark. Environ. Toxicol. Chem. 24:802-810 https://doi.org/10.1897/03-576.1
  14. Halling-Sorensen, B., G. Sengelov, and J. Tjornelund. 2002. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline resistant bacteria. Arch. Environ. Contam. Toxicol. 42:263-271 https://doi.org/10.1007/s00244-001-0017-2
  15. Halling-Sorensen, B., S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lutzhoft, and S.E. Jorgensen. 1998. Occurrence, fate and effects of pharmaceutical substances in the environment A review. Chemosphere 36:357-393 https://doi.org/10.1016/S0045-6535(97)00354-8
  16. Hirsch, R., T. Ternes, K. Haberer, and K. Kratz. 1999. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 225:109-118 https://doi.org/10.1016/S0048-9697(98)00337-4
  17. Hornish, R.E., Gosline, R.E., and J.M. Nappier. 1987. Comparative metabolism of lincomycin in the swine, chicken, and rat. Drug Metab. Rev. 18:177-214 https://doi.org/10.3109/03602538708998305
  18. Huber, W.G. 1966. Streptomycin. p. 519-530. In Jones, L.M. (ed.). Veterinary pharmacology and therapeutics. 3rd ed. Iowa State College Press, IA, USA
  19. Ingerslev, F., L. Torang, M. Loke, B. Halling-Sorensen, and N. Nyholm. 2001. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865-872 https://doi.org/10.1016/S0045-6535(00)00479-3
  20. Kay, P., P.A. Blackwell, and A.B.A. Boxall. 2004. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ. Toxicol. Chem. 23:1136-1144 https://doi.org/10.1897/03-374
  21. Kay, P., P.A. Blackwell, and A.B.A. Boxall. 2005a. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ. Pollution. 134:333-341 https://doi.org/10.1016/j.envpol.2004.07.021
  22. Kay, P., P.A. Blackwell, and A.B.A. Boxall. 2005b. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59:951-959 https://doi.org/10.1016/j.chemosphere.2004.11.055
  23. Kim, M.H., J. Park, Y.H. Kim, and K. Choi. 2006. Prioritizing human use antibiotics for environmental health management and estimating their environmental concentrations in Korean waterway. Kor. J. Env. Hlth. 32(5):462-468
  24. Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999 2000: A national reconnaissance. Environ. Sci. Technol. 36:1202-1211 https://doi.org/10.1021/es011055j
  25. Kreuzig, R., S. Holtge, J. Brunotte, N. Berenzen, J. Wogram, and R. Schulz. 2005. Test plot studies on runoff of sulfonarnides from manured soils after sprinkler irrigation. Environ. Toxicol. Chem. 24:777-781 https://doi.org/10.1897/04-019R.1
  26. Lee, Y. 2006. Nitrogen management in Korean agriculture. p. 33-44. In Nitrogen behavior and effective management in agro ecosystem. Rural Development Administration-National Institute of Agricultural Science and Technology, Suwon, Korea
  27. Mathews Jr., K.H. 2001. Antimicrobial drug use and veterinary costs in U.S. livestock production. p. 1-10. United States Department of Agriculture. Agriculture Information Bulletin 766. USDA, USA
  28. Mellon, M., C. Benbrook, and K.L. Benbrook. 2001. Hogging it. Estimates of antimicrobial abuse in livestock. UCS Publications. Cambridge, MA
  29. Mitscher, L.A. 1978. The chemistry of the tetracycline antibiotics. p. 1-45. Marcel Dekker, Inc. New York, NY, USA
  30. Montforts, M.H.M.M, D.F. Kalf, P.L.A. van Vlaardingen, and J.B.H.J. Linders. 1999. The exposure assessment for veterinary medicinal products. Sci. Total Environ. 225:119-133 https://doi.org/10.1016/S0048-9697(98)00338-6
  31. National Veterinary Research & Quarantine Service. 2005. Establishment of control system of antibiotics for livestock. National Veterinary Research & Quarantine Service, Anyang, Korea
  32. National Veterinary Research & Quarantine Service. 2007. Veterinary antibiotics residue over the critical level in livestock products. Available at http://www.nvrqs.go.kr/Main_Index.asp. (verified 28 January 2007). National Veterinary Research & Quarantine Service, Anyang, Korea
  33. Onan, L.J. and T.M. LaPara. 2003. Tylosin-resistant bacteria cultivated from agricultural soil. FEMS Microbiol. Lett. 220:15-20 https://doi.org/10.1016/S0378-1097(03)00045-4
  34. Park, J.C., J.C. Lee, J.Y. Oh, Y.W. Jeong, J.W. Cho, H.S. Joo, and W.B. Lee. 2003. Antibiotic selective pressure for the maintenance of antibiotic resistant genes in coliform bacteria isolated from the aquatic environment. Water Sci. Technol. 47:249-253 https://doi.org/10.2166/wst.2003.0203
  35. Plumb, D.C. 2002. Veterinary drug handbook. 4th ed. p. 166-169. Iowa State Press, Ames, IA, USA
  36. Pratt, W.B. and R. Fekaty. 1986. Bactericidal inhibitors of protein synthesis, the aminoglycosides. p. 153-183. In The antimicrobial drugs. Ch. 7. Oxford Univ. Press, Oxford, USA
  37. Sengelov, G. Y. Agerso, B. Halling-Sorensen, S.B., Baloda, J.S. Anderen, and L.B. Jensen. 2003. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ. International. 28:587-595 https://doi.org/10.1016/S0160-4120(02)00084-3
  38. Thiele Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils a review. J. Plant Nutr. Soil Sci. 166:145-167 https://doi.org/10.1002/jpln.200390023
  39. Tolls, J. 2001. Sorption of veterinary pharmaceuticals in soils: A review. Environ. Sci. Tech. 35:3397-3406 https://doi.org/10.1021/es0003021
  40. Vaclavik, E., B. Halling-Sorensen, and F. Ingerslev. 2004. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667-676 https://doi.org/10.1016/j.chemosphere.2004.02.018
  41. von Wittenau, M.S. 1969. Comparative metabolism studies in swine, monkeys, and rats of carbadox. Submitted to WHO by Pfizer central research, Groton, CT, USA
  42. Winckler, C. and A. Grafe. 2001. Use of veterinary drugs in intensive animal production evidence for persistence of tetracycline in pig slurry. J. Soils and Sediments. 1:66-70 https://doi.org/10.1007/BF02987711