DOI QR코드

DOI QR Code

Studies on Marine Heterotrophic Protists in Masan Bay, Korea

마산만에서 부유원생동물의 연구

  • 이원제 (경남대학교 환경공학과) ;
  • 신경순 (한국해양연구원 남해연구소) ;
  • 이재도 ((주)월드이엔지 기술연구소 해양생물실)
  • Published : 2007.12.30

Abstract

In Korea the study of marine heterotrophic protists started in the late 1980s, and since the early 1990s many studies have been conducted in various marine environments. In this article, studies on the distribution and abundance of protists and the biotic interactions(bacteria-protists, phytoplankton-protists) conducted in Korean coastal waters are reviewed, and a field study is reported and discussed. The field study in Masan Bay was carried out from February 2004 to November 2005 at seven selected stations representative of the bay. During the study, the mean abundance of heterotrophic bacteria and the mean concentration of chlorophyll-a were $2.1{\times}10^6\;cells\;mL^{-1}$ and $9.8{\mu}g\;L^{-1}$, respectively. Heterotrophic protists consisted of heterotrophic dinoflagellates, heterotrophic nanoflagellates(excluding dinoflagellates) and ciliates, and their abundances were means of $7.9{\times}10^4\;cells\;L^{-1}$, $1.2[\times}10^3\;cells\;mL^{-1}$, and $4.0{\times}10^4\;cells\;L^{-1}$, respectively. Generally, the chlorophyll-a concentra+CZ14tions and the abundances of heterotrophic bacteria and protists were higher in the inner zone of the bay, where there are high concentrations of organic matters, than in the middle and outer zones. Using the grazing rates of heterotrophic nanoflagellates on bacteria previously reported in this area, it can be calculated that about 69% of bacterial producton was removed by HNF grazing activity. About 24% of initial chlorophyll-a concentration was removed by microzooplankton grazing activity. In conclusion, this study suggests that in Masan Bay heterotrophic protists control the growth of bacteria and phytoplankton, and heterotrophic protists represent an important link of bacterial & microalgal biomass to higher trophic levels.

국내에서 해양원생동물의 연구는 1990년대 초반에 본격적으로 시작되어 주로 원생동물의 분포와 섭식 등에 관한 연구가 진행되어왔다. 본 논문에서는 마산만 표영 환경에서의 박테리아와 원생동물의 분포, 박테리아와 원생동물의 상호작용과 원생동물과 식물플랑크톤의 상호작용의 특성에 대해 알아보고 앞으로의 연구방향에 대해 토의하였다. 마산만에서 종속영양 미소편모류의 현존량은 평균 $1.2{\times}10^3\;cells\;mL^{-1}$, 종속영양 와편모류는 평균 $7.9{\times}10^4\;cells\;mL^{-1}$, 섬모충류는 평균 $4.0{\times}10^4\;cells\;L^{-1}$로 나타났으며 전반적으로 엽록소-a 농도, 박테리아와 원생동물의 현존량은 유기물 유입이 많은 내만 정점에서 높게 나타났다. 종속영양 미소편모류는 박테리아 이차생산의 약 69%를 제거하는 것으로 나타나 박테리아 생물량을 조절할 것으로 판단되며 소형부유동물은 미소조류 및 박테리아와 양의 상관관계를 보였고 식물플랑크톤에 대한 섭식율(평균 24%)로 인해 이들 생물군집들에게 영향을 주었을 것으로 추정된다. 따라서 마산만에서 원생동물은 박테리아와 미소조류의 성장을 조절하고 이들의 생물량을 상위영양단계로 직접 전달하는 것으로 사료된다. 특히 종속영양 미소편모류는 마산만에서 박테리아의 주 포식자일 것으로 추정된다. 또한 마산만은 후생동물 먹이망보다 미세생물 먹이망이 상당히 잘 발달된 곳으로 추정된다.

Keywords

References

  1. 김요혜, 이준백. 2003. 제주도 남부해역의 부유성 섬모충류의 종조성과 계절 변동. 한국해양학회지 바다, 8, 59-69
  2. 박남주. 1995. 한국 연안의 미세생물 먹이망내에서 종속영양와편모류의 역할에 관한 연구. 석사학위논문, 인하대학교. 129 p
  3. 심재형, 박수영, 조병철, 이원호. 1995a. 만경동진강 염하구에서 섬모충류에 의한 박테리아 섭식에 관하여. 한국해양학회지, 30, 426-435
  4. 심재형, 신윤근, 조병철. 1993. 만경동진강 염하구에서의 박테리아 및 식물플랑크톤의 역할과 상호관계. 한국해양학회지, 28, 107-113
  5. 심재형, 윤성화, 윤상선, 최동한, 조병철. 1995b. 만경동진강 염하구에서 종속영양성 및 혼합영양성 미소편모류의 수도와 박테리아 섭식. 한국해양학회지, 30, 413-425
  6. 양은진, 최중기. 2003. 경기만 수역에서 미세생물 군집의 계절적 변동 연구 II. 미소형 및 소형 동물플랑크톤. 한국해양학회지 바다, 8, 78-93
  7. 양은진, 최중기, 현정호. 2003. 경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소편모류. 한국해양학회지 바다, 8, 44-57
  8. 이승민. 2005. 남해 및 동중국해의 미세생물분포와 먹이망구조. 박사학위논문, 인하대학교. 188 p
  9. 이원제. 1993. 경기만 유영생태계에서 부유원생동물의 역할에 관한 연구. 석사학위논문, 인하대학교. 81 p
  10. 이원제. 2007. 옥계만 단일정점에서 극미소 및 미소플랑크톤의 시간적 분포. 한국환경과학회지, 16, 855-863
  11. 정해진, 박종규, 김재성, 김성택, 윤주이, 김수경, 박용민. 2000. 전남 고흥 해역의 유해성 적조의 발생연구 3. 1997 년도 종속영양성 와편모류와 섬모류의 시공간적 변화. 한국해양학회지 바다, 5, 37-46
  12. 정해진, 유영두, 김재성. 2002. 전북 새만금 남쪽해역의 유해성 적조 연구 발생연구 2. 1999년도 여름-가을 종속영양성 와편모류와 섬모충류의 시간적 변화. 한국해양학회지 바다, 7, 140-147
  13. 한국해양연구소. 1998. 진해 마산만 수질환경 관리모델 개발 (II). BSPE 98703-01-1147-2
  14. 한국해양연구소. 1999. 진해 마산만 수질환경 관리모델 개발 (III). BSPE 99750-00-1238-2
  15. 한명수, 유광일. 1983a. 진해만의 쌍편모조류에 관한 분류학적 연구. 제1보: 유각류와 무각류. 해양연구소보, 5, 37-47
  16. 한명수, 유광일. 1983b. 진해만의 쌍편모조류에 관한 분류학적 연구. 제2보: 페리디니움목. 해양연구소보, 5, 49-67
  17. Andersen, P. and T. Fenchel. 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr., 30, 198-202 https://doi.org/10.4319/lo.1985.30.1.0198
  18. Andersson, A., U. Larsson, and A. Hagstrom. 1986. Sizeselective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser., 33, 51-57 https://doi.org/10.3354/meps033051
  19. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of watercolumn microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263 https://doi.org/10.3354/meps010257
  20. Bell, R.T. and J. Kuparinen. 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. Environ. Microbiol., 48, 1221-1230
  21. Berninger, U.-G., D.A. Caron, R.W. Sanders, and B.J. Finlay. 1991. Heterotrophic flagellates of planktonic communities, their characteristics and methods of study. p. 39-56. In: The biology of free-living heterotrophic flagellates. ed. by D.J. Patterson and J. Larsen. Clarendon Press, Oxford
  22. Bird, D.F. and J. Kalff. 1984. Empirical relationships between bacterial abundnace and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci., 41, 1015-1023 https://doi.org/10.1139/f84-118
  23. Bloem, J., C. Albert, M.-J.B. Bar-Gilisen, T. Berman, and T.E. Cappenberg. 1989. Nutrient cycling through phytoplankton, bacteria and protozoa, in selectively filtered Lake Vechten Water. J. Plankt. Res., 11, 119-131 https://doi.org/10.1093/plankt/11.1.119
  24. Bratbak, G., M. Heldal, S. Norland, and T.F. Thingstad. 1990. Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol., 56, 1400-1405
  25. Carlough, L.A. and J.L. Meyer. 1989. Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Limnol. Oceanogr., 34, 163-177 https://doi.org/10.4319/lo.1989.34.1.0163
  26. Caron, D.A. and B.J. Finlay. 1994. Protozoan links in food webs. Prog. Protozool., 125-130
  27. Caron, D.A., J.C. Goldman, O.K. Andersen, and M.R. Dennett. 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser., 24, 243-254 https://doi.org/10.3354/meps024243
  28. Cho, B.C., J.K. Choi, C.S. Chung, and G.H. Hong. 1994. Uncoupling of bacteria and phytoplankton during a spring diatom bloom in the mouth of the Yellow Sea. Mar. Ecol. Prog. Ser., 115, 181-190 https://doi.org/10.3354/meps115181
  29. Cho, B.C., J.H. Shim, and G.H. Hong. 1998. Bacterial abundance and production in July 1997 in the vicinity of Tokdo, East Sea. J. Korean Soc. Oceanogr., 33, 205-211
  30. Cho, B.C., S.C. Na, and D.H. Choi. 1998. Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East Sea, Korea. Mar. Ecol. Prog. Ser., 206, 23-32 https://doi.org/10.3354/meps206023
  31. Choi, J.K., S.K. Kim, J.H. Noh, and K.C. Park. 1995. The study on the grazing rate of protozooplankton in the microbial food web of Inchon coastal waters. J. Korean Soc. Oceanogr., 30, 458-466
  32. Choi, D.H., S.C. Na, Y.C. Park, S.H. Huh, and B.C. Cho. 1999. Chracteristics of microbial abundance in hypoxic water of brackish Lake Shiwa. J. Korean Soc. Oceanogr., 34, 236-240
  33. Epply, R.W., S.G. Horrigan, J.A. Fuhrmana, E.R. Brooks, C.C. Price, and K. Sellner. 1981. Origins of dissolved organic matter in southern California coastal waters: Experiments on the role of zooplankton. Mar. Ecol. Prog. Ser., 6, 149-159 https://doi.org/10.3354/meps006149
  34. Fenchel, T. 1987. Ecology of protozoa: The biology of freeliving phagotrophic protists. Science Tech Publishers, Medison
  35. Fenchel, T. and P.R. Larsson. 1988. The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser., 48, 1-15 https://doi.org/10.3354/meps048001
  36. Gasol, J.M. and D. Vaque. 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic system? Limnol. Oceanogr., 38, 657-665 https://doi.org/10.4319/lo.1993.38.3.0657
  37. Goldman, J.C., D.A. Caron, O.K. Anderson, and M.R. Dennett. 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser., 24, 231-242 https://doi.org/10.3354/meps024231
  38. Han, M.-S., S.-W. Kim, and Y.-O. Kim. 1991. Influence of discontinuous layer on plankton community structure and distribution in Masan Bay, Korea. Bull. Korean Fish. Soc., 24, 459-471
  39. Jeong, H.J. 1988. An ecological study on marine tintinnids (ciliated protozoa; Order Tintinnida) in Cheonsu Bay, Korea. MsD Thesis, Seoul University. 60 p
  40. Jeong, H.J. 1994. Predation effects of the calanoid copepod Acartia tonsa on a population of the heterotrophic dinoflagellate Protoperidinium cf. divergens in the presence of co-occurring red-tide dinoflagellate prey. Mar. Eco. Prog. Ser., 111, 87-97 https://doi.org/10.3354/meps111087
  41. Jeong, H.J., J.S. Kim, J.Y. Park, J.H. Kim, S. Kim, I. Lee, S.H. Lee, J.H. Ha, and W.H. Yih. 2005. Stoeckeria algicida n. gen., n. sp. (Dinophyceae) from the coastal waters off Southern Korea: Morphology and small subunit ribosomal DNA gene sequence. J. Eukaryot. Microbiol., 52, 382-390 https://doi.org/10.1111/j.1550-7408.2005.00051.x
  42. Jeong, H.J., J.S. Kim, S. Kim, J.Y. Song, I. Lee, and G.-H. Lee. 2004. Strombidinopsis jeokjo n. sp. (Ciliophora: Choreotrichida) from the coastal waters off western Korea: morphology and small subunit ribosomal DNA gene sequence. J. Eukaryot. Microbiol., 51, 451-455 https://doi.org/10.1111/j.1550-7408.2004.tb00393.x
  43. Jeong, H.J., C.W. Lee, W.H. Yih, and J.S. Kim. 1997. Fragilidium cf. mexicanum, a thecate mixotrophic dinoflagellate which is prey for and a predator on cooccuring thecate heterotrophic dinoflagellate Protoperidinium cf. divergens. Mar. Ecol. Prog. Ser., 151, 299-305 https://doi.org/10.3354/meps151299
  44. Kim, J.S. and H.J. Jeong. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser., 280, 85-94 https://doi.org/10.3354/meps280085
  45. Landry, M.R. and A. Clavet. 2004. Microzooplankton production in the oceans. ICES J. Mar. Sci., 61, 501-507 https://doi.org/10.1016/j.icesjms.2004.03.011
  46. Landry, M.R. and R.P. Hassett. 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol., 67, 283-288 https://doi.org/10.1007/BF00397668
  47. Latz, M.I. and H.J. Jeong. 1996. Effects of red tide dinoflagellate diet and cannibalism on the bioluminescence of the heterotrophic dinoflagellates Protoperidinium spp. Mar. Ecol. Prog. Ser., 132, 275-285 https://doi.org/10.3354/meps132275
  48. Laybourn-Parry, J. and J. Parry. 2000. Flagellates and the microbial loop. p. 216-239. In: The flagellates: Unity, diversity and evolution. ed. by B.S.C. Leadbeater and J.C. Green. Taylor & Francis, London and New York
  49. Lee, J.-B. and K.-I. Yoo. 1990. Dynamics and seasonal succession of dinoflagellate community in Masan Bay, Korea. J. Korean Soc. Oceanogr., 25, 106-116
  50. Lee, J.-B. and K.-I. Yoo. 1991. Distribution of dinoflagellate cysts in Masan Bay, Korea. J. Korean Soc. Oceanogr., 26, 304-312
  51. Lee, W.J. 2002. Some free-living heterotrophic flagellates from marine sediments of Inchon and Ganghwa Island, Korea. Korean J. Biol. Sci., 6, 125-143
  52. Lee, W.J. and J.K. Choi. 2000. The role of heterotrophic protists in the planktonic community of Kyeonggi Bay, Korea. J. Korean Soc. Oceanogr., 35, 46-55
  53. Lee, W.J. and D.J. Patterson. 2002. Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay. Microb. Ecol., 43, 467-481 https://doi.org/10.1007/s00248-002-2000-5
  54. Lee, W.J, N.J. Park, and J.K. Choi. 2002. Abundance of heterotrophic- and photosynthetic dinoflagellates and factors controlling their abundance in Korean coastal waters during summer 1994. J. Korean Soc. Oceanogr., 37, 201-211
  55. Lee, W.J., K. Shin, P.G. Jang, M.-C. Jang, M. Chang, and N.J. Park. 2005. Summer pattern of phytoplankton distribution at a station in Jangmok Bay. Ocean Sci. J., 40, 109-117 https://doi.org/10.1007/BF03022605
  56. Lei, Y., J.K. Choi, K. Xu, and W. Petz. 2005a. Morphology and infraciliature of three species of Metaurostylopsis (Ciliophora, Stichotrichia): M. songi n. sp., M. salina n. sp., and M. marina (Kahl 1932) from sediments, saline ponds, and coastal waters. J. Eukar. Microbiol., 52, 1-10 https://doi.org/10.1111/j.1550-7408.2005.3294rr.x
  57. Lei, Y., K. Xu, and J.K. Choi. 2005b. Holosticha hamulata n. sp. and Holosticha heterofoissneri Hu and Song, 2001, two urostylid ciliates (protozoa, ciliophora) from intertidal sediments of the Yellow Sea. J. Eukar. Microbiol., 52, 310-318 https://doi.org/10.1111/j.1550-7408.2005.00039.x
  58. Park, J.S. and B.C. Cho. 2002. Active heterotrophic nanoflagellates in the hypoxic water-column of the eutrophic Masan Bay, Korea. Mar. Ecol. Prog. Ser., 230, 35-45 https://doi.org/10.3354/meps230035
  59. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pegamon Press, Oxford
  60. Pomeroy, L.R. 1974. The ocean's food web, a changing paradigm. BioScience, 24, 499-504 https://doi.org/10.2307/1296885
  61. Porter, K.G., E.B. Sherr, B.F. Sherr, M. Pace, and R.W. Sanders. 1985. Protozoa in planktonic food webs. J. Protozool., 32, 409-415 https://doi.org/10.1111/j.1550-7408.1985.tb04036.x
  62. Sanders, R.W., D.A. Caron, and U.-G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison. Mar. Ecol. Prog. Ser., 86, 1-14 https://doi.org/10.3354/meps086001
  63. Sherr, B.F. and E.B. Sherr. 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. p. 412-423. In: Current Perspective in Microbial Ecology. ed. by M.J. Klug and C.A. Reddy. American Society for Microbiology, Washington, D.C
  64. Sherr, E.B. and B.F. Sherr. 1988. Role of microbes in pelagic food webs: A revised concepy. Limnol. Oceanogr., 33, 1225-1227 https://doi.org/10.4319/lo.1988.33.5.1225
  65. Sherr, B.F., E.B. Sherr, and R.D. Fallon. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol., 53, 958-965
  66. Small, L.F., M.R. Landry, R.W. Eppley, F. Azam, and A.F. Carlucci. 1989. Role of plankton in the carbon and nitrogen budgets of Santa Monica Basin California. Mar. Ecol. Prog. Ser., 56, 57-74 https://doi.org/10.3354/meps056057
  67. Stoecker, D.K. and N.K. Sanders. 1985. Differential grazing by Acartia tonsa on a dinoflagellate and a tintinnid. J. Plankt. Res., 7, 85-100 https://doi.org/10.1093/plankt/7.1.85
  68. Stout, J.D. 1980. The role of protozoa in nutrient cycling and energy flow. p. 1-50. In: Advances in microbial ecology. ed. by K.C. Maeshall. Plenum Press, New York
  69. Yoo, K.I., D.Y. Kim, and Y.O. Kim. 1988. Taxonomical studies on tintinnids (Protozoa: Ciliata) in Korean coastal waters. 1. Chinhae Bay. Korean J. Syst. Zool., 4, 67-90
  70. Yoo, K.I. and Y.O. Kim. 1990. Taxonomical studies on tintinnids (Protozoa: Ciliata) in Korean coastal waters 2. Yongil Bay. Korean J. Syst. Zool., 6, 87-122
  71. Yoo, K. and J.B. Lee. 1987. On the trophic correlation between tintinnids and dinoflagellates in Masan Bay, Korea. Bull. Korean Fish. Soc., 20, 230-236

Cited by

  1. Tidal and Seasonal Variations in Ciliate Abundance and Biomass in the Han River Estuary vol.31, pp.1, 2009, https://doi.org/10.4217/OPR.2009.31.1.077
  2. Morphological Descriptions of Four Oligotrich Ciliates (Ciliophora: Oligotrichia) from Southern Coast of Korea vol.27, pp.2, 2011, https://doi.org/10.5635/KJSZ.2011.27.2.131
  3. Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary vol.71, pp.4, 2015, https://doi.org/10.1007/s10872-015-0292-6
  4. Analysis of Environmental Factors Related to Seasonal Variation of Bacteria and Heterotrophic Nanoflagellate in Kyeonggi Bay, Korea vol.35, pp.2, 2017, https://doi.org/10.11626/KJEB.2017.35.2.198