Petrology of the Basalt of Kilauea Volcano, Hawaii

하와이 킬라우에아 화산 현무암에 대한 암석학적 연구

  • 박병준 (경북대학교 자연과학대학 지질학과) ;
  • 장윤득 (경북대학교 자연과학대학 지질학과)
  • Published : 2007.06.30

Abstract

Kilauea volcano located in the southern part of Hawaii island chains has been formed by continuous and sporadic eruption activities from 16 century to September of 1982. Kilauea volcano was investigated from collecting the samples of basalt to identify the geochemical characteristics of the lavas. Olivine, clinopyroxene, plagioclase, and opaque minerals with glass groundmass are observed. Clinopyroxene formed glomerophopyritic texture with plagioclase and zoning texture was observed in some of plagioclase phenocrysts. Major elements such as $K_2O$, $P_2O_5$, $TiO_2$ increased with respect to MgO. $Al_2O_3$ and CaO show the kink on Marker diagram due to the crystal fractionation of plagioclase and clinopyroxene with plagioclase respectively. Olivine has a wide range of Fo% ranging from 60 to 90, and MnO and FeO in the olivine are decreased with increasing Fo% oppositely increased $SiO_2$, MgO, and NiO. Ni in the whole rock is controlled not only by the mode of olivine but also by the Ni abondance in the olivine.

하와이 제도 남단에 위치한 하와이섬의 킬라우에아 화산은 16세기 이래로 1982년 9월까지 계속적이고 간헐적인 분출로 형성된 화산체이다. 킬라우에아 화산 정상부 분화구 지역을 중심으로 야외지질조사, 체계적인 시료채취, 암석기재학 및 지구화학적인 특성분석을 수행하였다. 구성광물로는 주요 반정광물인 감람석을 비롯하여, 단사휘석, 사장석, 불투명광물등의 반정광물과 유리질 기질로 구성된다. 단사휘석과 사장석에서는 취반상조직, 사장석 반정에는 누대구조가 간간히 관찰되었다. 주원소 함량에서 $K_2O$, $P_2O_5$, $TiO_2$는 MgO 함량이 감소할 때 증가하는 경향을 보이고 $Al_2O_3$와 CaO는 변곡점을 보이는데 Al은 사장석, Ca는 사장석과 단사휘석의 결정화와 각각 밀접한 관련이 있는 것으로 해석된다. 감람석의 Fo%값은 60에서 90까지 넓은 변화폭을 가지고 Fo%에 대한 감람석 주원소 값에서 MnO와 FeO는 감소하며 반대로 $SiO_2$, MgO와 NiO는 증가한다. 킬라우에아 화산 현무암의 Ni함량의 변화는 감람석의 모드 함량과 감람석 결정 내의 Ni함량의 변화에 의하여 규제되는 것으로 생각된다.

Keywords

References

  1. 황상구, 이문원, 원종관, 우경식, 이광춘, 2003, 하와이 섬의 지질과 마우나로아 및 킬라우에아의 화산활동. 암석학회지, 12(4), 184-195
  2. Dvorak, J. J., 1992, Mechanism of explosive eruption of Kilauea volcano, Hawaii. Bull. Volcanol, 54, 638-645 https://doi.org/10.1007/BF00430777
  3. Finch, R. H., 1940, Engulfment at Kilauea Volcano. The Volcano Letter, 470, Smithonian Institution Press, 1-4
  4. Garcia, M. O. Pietruszka, A. J. and Rhodes, J. M., 2003, A petrologic perspective of kilauea volcano's summit magma reservoir. J. Petrol., 44(12), 2313-2339 https://doi.org/10.1093/petrology/egg079
  5. Garcia, M. O., Pietruszka, A. J., Rhodes, J. M., and Swanson, K., 2000, Magmatic processes analyses of glass and olivine from PuuOo eruption of Kilauea Volcano, Hawaii. J. Petrol., 41, 967-990 https://doi.org/10.1093/petrology/41.7.967
  6. Garcia, M. O., Ito, E., Eiler, J. M., and Pietruszka, A. 1998, Crystal contamination of Kilauea Volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J. Petrol., 39, 803-817 https://doi.org/10.1093/petrology/39.5.803
  7. Ho, R. A. and Garcia, M. O., 1988, Origin of differentiated lavas at Kilauea Volcano, Hawaii: Implications from the 1955 eruption. Bull. Volcanol., 50, 35-46 https://doi.org/10.1007/BF01047507
  8. Hofmann, A. W., Feigenson, M. D. and Raczek, I., 1984, Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969-1971. Contrib. Mineral. Petrol., 88, 24-35
  9. Helz, R. T., 1987, Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano and their bearing on eruption dynamics. in Volcanism in Hawaii, US Geol. Surv. Prof. Pap., 1350, 691-722
  10. Jaggar, T. A., 1947, Origin and Evolution of Craters. Geol. Soc. Am. Memoir, 121, 508
  11. Jang, Y. D., 2003, Compositional variation in olivine in the skaergaard intrusion. J. Petrol. Soc. Korea., 12-3, 110-118
  12. Neal, C. A. and Lockwood, J. P., 2003, Geologic map of the summit region of Kilauea Volcano, Hawaii. US Geological Survey Map I-2759
  13. Peterson, D. W. and Moore, R. B., 1987, Geologic history and evolution of geologic concepts, Island of Hawaii, US Geol. Surv. Prof. Pap., 1350-1, 149-189
  14. Pietruszka, A. P., Rubin, K. H., and Garcia, M. O., 2001, $^{226}Ra-^{230}Th-^{238}U$ disequilibria of historical Kilauea lavas (1790-1982) and the dynamics of mantle melting within the Hawaiian plume. Earth Planet. Sci. Lett., 186, 15-31 https://doi.org/10.1016/S0012-821X(01)00230-8
  15. Pietruszka, A. J. and Garcia, M. O., 1999a, The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet. Sci. Lett., 167, 311-320 https://doi.org/10.1016/S0012-821X(99)00036-9
  16. Pietruszka, A. J. and Garcia, M. O., 1999b, A rapid fluctuation in the mantle source and melting history of Kilauea volcano inferred from the geochemistry of its historical summit lavas (1790-1982). J. Petrol., 40-8, 1321-1342 https://doi.org/10.1093/petrology/40.8.1321
  17. Powers, H., 1955, Composition and origin of basaltic magma of the Hawaiian Islands. Geocim. Cosmochim. Acta, 7, 77-107 https://doi.org/10.1016/0016-7037(55)90047-8
  18. Shelley, D., 1992, Igneous and Metamorphic Rocks under the Microscope: Classification, Textures, Microsructures and Mineral Preferred-Orientations, Chapman & Hall, 175pp
  19. Wagner, T. P. et al., 1998, Trace element abundances of high-MgO glasses from Kilauea, Mauna Loa and Haleakala volcanoes, Hawaii. Contrib. Mineral. Petrol., 131, 13-21 https://doi.org/10.1007/s004100050375
  20. Wright, T. L., 1971, Chemistry of Kilauea and Mauna Loa in space and time. US Geol. Surv. Prof. Pap., 735, 1-40
  21. Wright, T. L. and Fiske, R. S., 1971, Origin of differentiated and hybrid lavas of Kilauea Volcano, Hawaii. J. Petrol. 12, 1-65 https://doi.org/10.1093/petrology/12.1.1