Evaluation of Insertion of torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone

다양한 교정용 미니 스크류의 인공 피질골 두께에 따른 삽입 토오크와 Pull-out 강도 비교

  • Song, Young-Youn (Private Practice) ;
  • Cha, Jung-Yul (Department of Orthodontics, College of Dentistry, Dental Science Research Institute, Yonsei University) ;
  • Hwang, Chung-Ju (Department of Orthodontics, College of Dentistry, Yonsei University)
  • 송영윤 (개인 치과 의원) ;
  • 차정열 (연세대학교 치과대학 교정학교실, 두개안면기형 연구소, 구강과학 연구소) ;
  • 황충주 (연세대학교 치과대학 교정학교실)
  • Published : 2007.02.28

Abstract

Objective: The purpose of this study was to evaluate the mechanical performance of mini-screws during insertion into artificial bone with use of the driving torque tester (Biomaterials Korea, Seoul, Korea), as well as testing of Pull-out Strength (POS). Methods: Experimental bone blocks with different cortical bone thickness were used as specimens. Three modules of commercially available drill-free type mini-screws (Type A; pure cylindrical type, Biomaterials Korea, Seoul, Korea, Type B; partially cylindrical type, Jeil Medical, Seoul, Korea, Type C; combination type of cylindrical and tapered portions, Ortholution, Seoul, Korea), were used. Results: Difference in the cortical bone thickness had little effect on the maximum insertion torque (MIT) in Type A mini-screws. But in Type B and C, MIT increased as the cortical bone thickness Increased. MIT of Type C was highest in all situations, then Type B and Type A in order. Type C showed lower POS than Type A or B in all situations. There were statistically significant correlations between cortical bone thickness and MIT, and POS for each type of the mini-screws. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the best suitable screw design should be selected according to the different cortical thicknesses at the implant sites.

본 연구는 스크류의 역학적인 특성을 알아보고자 세 종류의 self-drilling형의 교정용 미니 스크류 (Type A; 순수한 원통형, Type B; 내경이 증가하는 구간이 있는 부분적인 원통형, Type C; 원통형과 원추형이 함께 있는 복합형)를 피질골의 두께를 다르게 설정한 인공골 시편에 삽입하였다. 일정한 회전 속도와 수직력을 부여할 수 있는 구동식 토오크 시험기(Biomaterials Korea, Seoul, Korea)를 이용하여 삽입 토오크를 측정하고 만능시험기(Instron 3366, Instron, Norwood, MA, USA)를 이용하여 Pull-out 강도를 측정하여 다음과 같은 결과를 얻었다. 피질골 두께의 증가에 따른 최대 삽입 토오크(maximum insertion torque) 값은 Type A는 차이가 없는 반면(p > 0.05), Type B와 Type C에서는 유의한 증가가 관찰되었다 (p < 0.05). 모든 피질골 두께에서 Type C > Type A > Type B의 순으로 최대 삽입 토오크 값이 크게 나타났다 (p < 0.05). Pull-out 강도는 모든 경우에 Type A가 Type B와 Type C보다 낮게 측정되었다 (p < 0.05). Type별로 피질골 두께와 최대 삽입 토오크, Pull-out 강도 간에 통계적으로 유의한 상관관계가 있었다 (p < 0.05). 이상의 결과는 미니 스크류 식립을 위한 디자인 선택 시 식립부위의 피질골 두께를 고려해야 함을 시사한다.

Keywords

References

  1. Byloff FK, Karcher H, Clar E, Stoff F. An implant to eliminate anchorage loss during molar distalization: a case report involving the Graz implant-supported pendulum. Int J Adult Orthodon Orthognath Surg 2000;15:129-37
  2. Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop 1995;107:251-8 https://doi.org/10.1016/S0889-5406(95)70140-0
  3. Melsen B, Petersen JK, Costa A. Zygoma ligatures: an alternative form of maxillary anchorage. J Clin Orthod 1998;32:154-8
  4. Creelanore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17:266-9
  5. Daimaruya T, Nagasaka H, Umemori M, Sugawara J, Mitani H. The influences of molar intrusion on the inferior alveolar neurovascular bundle and root using the skeletal anchorage system in dogs. Angle Orthod 2001;71:60-70
  6. Daimaruya T, Takahashi I, Nagasaka H, Umemori M, Sugawara J, Mitani H. Effects of maxillaq molar intrusion on the nasal floor and tooth root using the skeletal anchorage system in dogs. Angle Orthod 2003;73:158-66
  7. Sugawara J, Baik UB, Umemori M, Takahashi I, Nagasaka H, Kawamura H, Mitani H. Treatment and posttreatment dentoalveolar changes following intrusion of mandibular molars with application of a skeletal anchorage system (SAS) for open bite correction. Int J Adult Orthodon Orthognath Surg 2002;17:243-53
  8. Sugawara J, Daimaruya T, Umemori M, Nagasaka H, Takahashi I, Kawamura H, Mitani H. Distal movement of mandibular molars in adult patients with the skeletal anchorage system. Am J Orthod Dentofacial Orthop 2004;125:130-8 https://doi.org/10.1016/j.ajodo.2003.02.003
  9. Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK Jr, Roberts WE, Garetto LP. The use of small titanium screws for orthodontic anchorage. J Dent Res 2003;82:377-81 https://doi.org/10.1177/154405910308200510
  10. Carano A, Velo S, Incorvati C, Poggio P. Clinical applications of the Mini-Screw-Anchorage-System (M.A.S.) in the maxillary alveolar bone. Prog Orthod 2004;5:212-35
  11. Kanomi R. Mini-Implant for orthodontic anchorage. J Clin Orthod 1997;31 :763-7
  12. Park HS, Kwon TG, Kwon OW. Treatment of open bite with microscrew implant anchorage. Am J Orthod Dentofacial Orthop 2004; 126:627-36 https://doi.org/10.1016/j.ajodo.2003.07.019
  13. Park HS, Kwon OW, Sung JH. Microscrew implant anchorage sliding mechanics. World J Orthod 2005;6:265-74
  14. Park HS, Lee SK, Kwon OW. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod 2005;75:602-9
  15. Kyung SH, Choi JH, Park YC. Miniscrew anchorage used to protract lower second molars into first molar extraction sites. J Clin Orthod 2003;37:575-9
  16. Kyung SH, Choi HW, Kim KH, Park YC. Bonding orthodontic attachments to miniscrew heads. J Clin Orthod 2005;39:348-53
  17. Lee JS, Kim DH. Park YC, Kyung SH, Kim TK. The efficient use of midpalatal miniscrew implants. Angle Orthod 2004;74:711-4
  18. Roth A, Yildirim M, Diedrich P. Forced eruption with microscrew anchorage for preprosthetic leveling of the gingival margin. Case report. J Orofac Orthop 2004;65:513-9 https://doi.org/10.1007/s00056-004-0430-z
  19. Carano A, Lonardo P, Velo S, Incorvati C. Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Prog Orthod 2005;6:82-97
  20. Carano A, Velo S, Leone P, Siciliani G. Clinical applications of the Miniscrew Anchorage System. J Clin Orthod 2005;39:9-24
  21. Park YC, Chu JH, Choi YJ, Choi NC. Extraction space closure with vacuum-formed splints and miniscrew anchorage. J Clin Orthod 2005;39:76-9
  22. Ohmae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R Yamasaki K, Okano T, Yamada S, Shibasaki Y. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop 2001;119:489-97 https://doi.org/10.1067/mod.2001.114300
  23. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminav report. Int J Adult Orthodon Orthognath Surg 1998;13:201-9
  24. Park HS. Clinical study on success rate of microscrew implants for orthodontic anchorage. Korea J Orthod 2003;33:151-6
  25. Kyung SH, Lim JK, Park YC. The use of miniscrew as an anchorage for the orthodontic tooth movement. Korea J Orthod 2001;31:415-24
  26. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korea J Orthod 2003;33:11-20
  27. Woo SS, Jeong ST, Huh YS, Hwang KG. A clinical study on skeletal anchorage system using miniscrew. J Korean Assoc Oral Maxillofac Surg. 2003;29:102-7
  28. Kim YJ, Choi JH, A clinical study on intraoral anchorage using titanium miniscrew. J Kor Dent Asso 2001;39:684-7
  29. Brown GA, McCarthy T, Bourgeault CA, Callahan DJ. Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 2000;18:307-12 https://doi.org/10.1002/jor.1100180220
  30. Lee JS. Contact non-linear finite element model analysis of immediately-loaded orthodontic mini implant [thesis]. Seoul, Korea: Yonsei University; 2004
  31. Baek CW. A design of miniscrew for anchorage control in orthodontic treatment [thesis], Seoul, Korea; Yonsei University; 2003
  32. Heidemann W, Gerlach KL, Grobel KH, Kollner HG. Influence of different pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. J Craniomaxillofac Surg 1998;26: 50-5 https://doi.org/10.1016/S1010-5182(98)80035-8
  33. Hornolka P, Beer A, Birkfellner W, Nowotny R GahleitnerA, Tschabitscher M, Bergmann H. Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology 2002;224:247-52 https://doi.org/10.1148/radiol.2241010948
  34. Hitchon PW, Brenton MD, Coppes JK, From AM, Tomer JC. Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine 2003;28:9-13 https://doi.org/10.1097/00007632-200301010-00004
  35. Kido H, Schulz EE, Kurnar A, Lozada J, Saha S. Implant diameter and bone density: effect on initial stability and Pull-out resistance. J Oral Implantol 1997;23: 163-9
  36. Baker D, London RM, O'Neal R. Rate of pull-out strength gain of dual-etched titanium implants: a comparative study in rabbits. Int J Oral Maxillofac Implants 1999;14:722-8
  37. Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop 2005;127:307-13 https://doi.org/10.1016/j.ajodo.2003.12.023
  38. Berkowitz R Njus G, Vrabec G. Pullout strength of self-tapping screws inserted to different depths. J Orthop Trauma 2005;19:462-5 https://doi.org/10.1097/01.bot.0000161544.72757.95
  39. Koistinen A, Santavirta S, Lappalainen R. Apparatus to test insertion and removal torque of bone screws. Proc Inst Mech Eng [H] 2003; 217:503-8 https://doi.org/10.1243/09544110360729135
  40. Koistinen A, Santavirta SS, Kroger H, Lappalainen R Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screw. Biomaterials 2005;26:5687-94 https://doi.org/10.1016/j.biomaterials.2005.02.003
  41. Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991;9:674-82 https://doi.org/10.1002/jor.1100090507
  42. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine 2000;25:858-64 https://doi.org/10.1097/00007632-200004010-00015
  43. Lawes TJ, Scott JC, Goodship AE. Increased insertion torque delays pin-bone interface loosening in external fixation with tapered bone screws. J Orthop Trauma 2004;18:617-22 https://doi.org/10.1097/00005131-200410000-00007
  44. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101
  45. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of tlutad size and thread profile: a finite element study. J Biomech 2003;36:1247-58 https://doi.org/10.1016/S0021-9290(03)00164-7
  46. Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J 2004;4:513-8 https://doi.org/10.1016/j.spinee.2004.02.006
  47. Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in cervical spine. J Spinal Disord Tech 2004; 17:306-11 https://doi.org/10.1097/01.bsd.0000090575.08296.9d
  48. Kim JW, Chang YI. Effects of drilling process in stability of microimplants used for the orthodontic anchorage. Korea J Orthod 2002; 32:107-15
  49. Lim SA. The comparison of insertion torque regarding changes of shape, diameter, and length of orthodontic miniscrew [thesis]. Seoul, Korea: Yonsei University; 2006