Bacterial Abundances and Enzymatic Activities in the Pore Water of Media of Artificial Floating Island in Lake Paro

파로호에 설치된 인공식물섬 식생기반재의 공극수에서 세균 분포와 체외효소활성도

  • Kim, Yong-Jeon (Dept. of Environmental Sience, Kangwon National University) ;
  • Hur, Jai-Kyou (Dept. of Environmental Sience, Kangwon National University) ;
  • Nam, Jong-Hyun (Dept. of Environmental Sience, Kangwon National University) ;
  • Kim, In-Seon (Dept. of Environmental Sience, Kangwon National University) ;
  • Choi, Kyoung-Suk (Dept. of Environmental Sience, Kangwon National University) ;
  • Choi, Seung-Ik (Dept. of Environmental Sience, Kangwon National University) ;
  • Ahn, Tae-Seok (Dept. of Environmental Sience, Kangwon National University)
  • Published : 2007.03.31

Abstract

For restoration of disturbed ecosystem in Lake Paro, artificial floating island (AFI) was installed. Even though the lake water was oligo-mesotrophic, the macrophytes, such as Iris ensata, Iris pseudoacorus, Phragmites communis were growing well in the rubberized coconut fiber media. For elucidating this process, total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase of pore water of media and lake water were analyzed. The average of total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase were $28.6{\times}10^{6}\;cells/ml,\;22.7{\times}10^{6}\;cells/ml,\;452.9nM/L/hr,\;and\;16381.9nM/L/hr$ which were 10, 15, 22 and 38 times higher than those of lake water, respectively. Moreover, the total phosphorus and total nitrogen concentration of media showed high values of 0.82 mg/L and 7.0 mg/L, respectively, while those of lake water 0.07 mg/L and 2.3 mg/L. This results suggest that the bacteria was playing an important role for restoration of disturbed ecosystem with newly created microbial ecosystem in media of artificial floating island.

생태계가 파괴된 파로호에 수초대를 복원하는 방법으로 rubberized coconut fiber를 식생기반재로 사용한 인공식물섬을 2003년 8월에 설치하였다. 인공식물섬 식생기반재에서는 식물이 자랄 수 있을 정도로 영양염이 농축되어 꽂창포(Iris ensata), 노랑 꽃창포(Iris pseudoacorus), 갈대(Phragmites communis)등 식재된 식물이 잘 자랐다. 이 과정에서 세균의 역할을 알아보기 위하여 2004년 4월부터 10월까지 2주 간격으로 총세균수, 활성세균수, ${\beta}-glucosidase$, phosphatase를 조사한 결과 인공식물성 식생기반재의 공극수에서 각각 평균 $28.6{\times}10^{6}\;cells/ml,\;22.7{\times}10^{6}\;cells/ml,\;452.9nM/L/hr,\;16381.9nM/L/hr$로 조사되어 파로호 호수물보다 각각 10배, 15배, 22배, 38배 높았다. 그리고 영양염류농도는 총인과 충질소가 식생기반재 공극수에서 각각평균 1.06 mg/L, 12.5 mg/L으로 조사되어 호수물보다 12배, 3배 높았다. 이 결과 인공식물섬 식생기반재에서 새로운 생태계가 만들어졌으며, 이 생태계에서 세균이 중요한 역할을 하여 빈-중영양상태의 호수물에서도 식물이 잘 자랄 수 있었다.

Keywords

References

  1. 김미리, 서은영, 최승익, 안태석. 2006. 호수 생태계에서 살아있는 세균을 측정하기 위한 qDVC 방법의 적용. 한국미생물학회 42, 205-209
  2. 박현진, 권오병, 안태석. 2000. 인공식물섬을 이용한 소형 저수지의 수질개선. 한국환경복원녹화학회지 4, 90-97
  3. 안태석. 2003. 수자원의 개발과 생태계의 보전. 춘천 물포럼 2003 논문집 441-455
  4. 안태석. 2005. 파로호의 환경 복원을 위한 생태기술. 생태낙원화천 포럼 2005 보고서. Eco paradise Hwacheon Forum 조직위원회 15-29
  5. 안태석. 2004. 여재를 이용한 자연순환방식의 수질정화 시스템 개발. 강원지역환경기술개발센터
  6. 안태석. 2005. 한강수계 생태계 복원방법 및 기술표준화연구. 한강수계관리위원회
  7. 안태석. 2003. 파로호 생태계 실태조사. 강원지역환경기술개발센터. 화천군
  8. 환경관리공단. 2000. 수초재배섬 운영 결과 보고서
  9. Aldredge, A.L. and M.W. Silver. 1988. Characteristics dynamics, and significance of marine snow. Prig. Oceanogr. 20, 41-82 https://doi.org/10.1016/0079-6611(88)90053-5
  10. APHA. 2001. Standard Methods for the examination of water and wastewater. 20th ed. APHA. N.Y., USA
  11. Barman, T.E. 1969. Enzyme Handbook, springer Verlag, Berlin, 2, 928
  12. Byeon, M.S., J.J. Yoo, O.S. Kim, S.I. Choi, and T.S. Ahn. 2002. Bacteriol abundances and enzymatic activities under artificial vegetation island in Lake Paldang. Korean J. Limnol. 35, 266-272
  13. Chrst, K. and J. Overbeck. 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake PluBsee. Microb. Ecol. 13, 229-248 https://doi.org/10.1007/BF02025000
  14. Chrst, R.J. 1989. Characterization and significance of B-glucosidase activity in lake water. Limnol. Oceanogr. 34, 660-672 https://doi.org/10.4319/lo.1989.34.4.0660
  15. Chrst, R.J. and J. Overbeck. 1990. Substrate-ectoenzyme interaction: Significance of Glucosidase activity for glucose metabolism by aquatic bacteria. Arch. Hydrobiol. Beih, Ergeb. Limnol. 34, 93-98
  16. Chrst, R.J. and H. Rai. 1994. Microbiol Ecology of Lake Plusee. p. 92-117 In J. Overbeck and Chrst, R.J. (editors), Bacteriol secondary production. Springer-Verlag. New York. USA
  17. Chrst, R.J., W. Siuda, and G.Z. Halemejk. 1984. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish aquaculture in relation to lake rutrophication and phosphorus cycle. Arch. Hydrobiol. Suppl. 70, 1-32
  18. Cottrell, M. and C. Suttle. 1991. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eucaryotic marine phytoplanker Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1-9 https://doi.org/10.3354/meps078001
  19. Fletcher, M. 1996. Bacteriol adhesion. p. 1-24. In Fletcher, M.(editor), Bacteriol attachment in aquatic environments: a diversity of surfaces and adhesion strategies. WILEY-LISS. New York, USA
  20. Hobbie, J.E., R.J. Daley, and S. Japer. 1977. Use ofnuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228
  21. Hunik, J.H., M.P. Hoogen, W. Boer, M. Smit, and J. Tramper. 1993. Quantitative determination of the spatial distribution of Nitrosomonas europaea and Nitrobacter agilis cells immobilized in K Carrageenan gel beads by a specific fluorescent antibody labelling technique. Appl. Environ. Microbiol. 59, 1951-1954
  22. Jansson, M., H. Olsson, and K. Peterson. 1988. Phosphatase: Origin, characteristics and function in lakes. Hydrobiologia 170, 157-176 https://doi.org/10.1007/BF00024903
  23. Wetzel, R.G. 1983. Limnology 2nd (ed.), CBS College Publishing. 159-614
  24. Wetzel, R.G. 2001. Limnology Lake and river Ecosystems, 3rd ed., Academic press, San Diego, USA