DOI QR코드

DOI QR Code

Electrical Anisotropy of the Okchon Belt Inferred from Magnetotelluric Data

자기지전류 탐사 자료에 나타나는 옥천대의 전기적 이방성 구조

  • Lee, Choon-Ki (Department Earth Science Education, Seoul National University) ;
  • Lee, Heui-Soon (Department Science Education, Gyeongin National University of Education) ;
  • Kwon, Byung-Doo (Department Earth Science Education, Seoul National University) ;
  • Cho, In-Ky (Department Geophysics, Kangwon National University) ;
  • Oh, Seok-Hoon (Department Geosystem Engineering, Kangwon National University) ;
  • Song, Yoon-Ho (Geothermal Resources Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Tae-Jong (Geothermal Resources Group, Korea Institute of Geoscience and Mineral Resources)
  • 이춘기 (서울대학교 지구과학교육과) ;
  • 이희순 (경인교육대학교 과학교육과) ;
  • 권병두 (서울대학교 지구과학교육과) ;
  • 조인기 (강원대학교 지구물리학과) ;
  • 오석훈 (강원대학교 지구시스템공학과) ;
  • 송윤호 (한국지질자원연구원 지열자원연구실) ;
  • 이태종 (한국지질자원연구원 지열자원연구실)
  • Published : 2007.04.30

Abstract

The MT data at the Okchon Belt show peculiar phase responses exceeding $90^{\circ}$. A reasonable explanation is that those responses are due to an electrical anisotropy structure which is composed of a narrow anisotropic block and an anisotropic layer. Considering the dominant anisotropic strikes of the block (NE-trend) and the layer (NW-trend) inferred from the MT data, if existing, the electrical anisotropy in the Okchon Belt was probably produced by the deformations in the pre-Jurassic period, since the NE-trending shearing or thrusting should create alternating bands of metamorphic rocks and fractures with NE-trending. Correlation of the structural strike of 2-D block with the latest EW-trending deformation events demonstrates that the geometrical structure of the anisotropic block was formed by the latest Daebo and Bulgugsa orogeny.

옥천대에서의 자기지전류 탐사자료는 위상이 $90^{\circ}$를 초과하는 매우 특이한 반응을 보이고 있으며 이러한 특이성은 매우 강한 이방성 매질의 영향에 기인하는 것으로 추정된다. 자료를 설명할 수 있는 타당한 모델은 좁은 이방성 블록과 이방성 층으로 이루어진 모델이다. 상부의 이방성 블록은 북동 방향의 주향을, 하부의 이방성 층은 북서 방향의 이방성 주향을 가지고 있으며 이방성 매질은 쥬라기 이전 지각변형에 의해 형성된 것으로 추정된다. 이는 옥천대가 백악기 이전에 북동 방향성을 가지는 전단 변형과 트러스트 습곡 변형을 경험하였기 때문에 그 방향으로의 교대구조와 파쇄대가 발달했을 가능성이 높기 때문이다. 반면 이방성 블록의 구조적 주향은 동서 방향이 우세하며 이것은 이방성 블록의 기하학적 구조가 백악기 지각변동인 불국사 조산운동에 의해 형성되었을 가능성을 시사한다.

Keywords

References

  1. 김정환, 이제용, 남길현, 1994, 단양탄전 지역에서의 선쥬라기 드러스트 운동. 지질학회지, 30(1), 35-40
  2. 이푼기, 권병두, 이희순, 조인기, 오석훈, 송윤호, 이태종, 2007, 한반도 횡단 자기지전류 탐사에 의한 상부 지각의 지전기적 구조 연구. 한국지구과학회지, 28(2), 187-201 https://doi.org/10.5467/JKESS.2007.28.2.187
  3. 조문섭, 김현철, 2002, 중부 옥천변성대의 변성진화: 최근의 연구결과 논평 및 문제점. 암석학회지, 11(3-4), 121-137
  4. Boerner, D.E., Kurtz, R.D., and Craven, J.A., 2000, A summary of electromagnetic studies on the Abitibi-Grenville Transect. Canadian Journal of Earth Sciences, 37 (2-3), 427-437 https://doi.org/10.1139/e99-063
  5. Brasse, H. and Soyer, W., 2001, A magnetotelluric survey in the Southern Chilean Andes. Geophysical Research Letter, 28 (19), 3757-3760 https://doi.org/10.1029/2001GL013224
  6. Chough, S.K. and Bahk, K.S., 1992, The Hwangkangri Formation in the Okchon Basin. In Chough, S.K. (ed.), Sedimentary Basins in the Korean Peninsula and Adjacent Seas. Korean Sedimentology Research Group, Special Publication. Hanrimwon publishers, Seoul, 77-101
  7. Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Science Reviews, 52 (1-3), 175-235 https://doi.org/10.1016/S0012-8252(00)00022-2
  8. Cluzel, D., Cadet, J.P., and Lapierre, H., 1990, Geodynam-ics of the Ogcheon Belt (South Korea). Tectonophysics, 183 (1-4), 41-56 https://doi.org/10.1016/0040-1951(90)90185-B
  9. Eaton, D.W., Jones, A.G, and Ferguson, I.J., 2004, Lithos-pheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations: Great Slave Lake shear zone, Northern Canada. Geophysical Research Letter, 31 (L07610), 1961-1964
  10. Eisel, M, Haak, V., Pek, J., and Cerv, V., 2001, A magnetotelluric profile across the German Eeep Drilling Project (KTB) area: two- and three-dimensional modeling results. Journal of Geophysical Research, 106 (B8), 16061-16073 https://doi.org/10.1029/2000JB900451
  11. Heise, W. and Pous, J., 2003, Anomalous phases exceeding $90^{\circ}$ in magnetotellurics: anisotropic model studies and a field example. Geophysical Journal International, 155 (11), 308-318 https://doi.org/10.1046/j.1365-246X.2003.02050.x
  12. Jones, A.G, Groom, R.D., and Kurtz, R.D., 1993, Decomposition and modelling of the BC87 dataset. Journal of Geomagnetism and Geoelectricity, 45 (9), 1127-1150 https://doi.org/10.5636/jgg.45.1127
  13. Jones, A.G, Katsube, T.J., and Schwann, P., 1997, The longest conductivity anomaly in the world explained: sulphides in fold hinghes causing very high electrical anisotropy. Journal of Geomagnetism and Geoelectricity, 49 (11-12), 1619-1629 https://doi.org/10.5636/jgg.49.1619
  14. Kim, J.H., 1996, Mesozoic tectonics in Korea. Journal of Southeast Asian Earth Science, 13 (3), 251-265 https://doi.org/10.1016/0743-9547(96)00032-3
  15. Lee, H., 2000, Significance of systematic changes in crenu-lation asymmetries within metasediments across the Ogcheon Supergroup in the Goesan area, southern Korea. Geosciences Journal, 4 (2), 115-134 https://doi.org/10.1007/BF02910132
  16. Livelybrooks, D., Mareschal, M., Blais, E., and Smith, J.T., 1996, Magnetotelluric delineation of the Trillabelle massive sulfide body in sudbury. Ontario, Geophysics, 61 (4), 971-986 https://doi.org/10.1190/1.1444046
  17. Pek, J. and Verner, T, 1997, Finite difference modelling of magnetotelluric fields in 2-D anisotropic media. Geophysical Journal International, 128 (3), 505-521 https://doi.org/10.1111/j.1365-246X.1997.tb05314.x
  18. Pous, J., Heise, W., Schnegg, P., Munoz, G, Marti, J. and Soriano, C, 2002, Magnetotelluric study of the Las Canadas Caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth and Planetary Science Letters, 204 (1-2), 249-263 https://doi.org/10.1016/S0012-821X(02)00960-3
  19. Ree, J.H., Cho, M, Kwon, ST., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang Belt. Geology, 24 (12), 1071-1074 https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  20. Wannamaker, P.E., 2000, Comment on 'The petrologic case for a dry lower crust', by Yardley, B.D. and Valley, J.W. Journal of Geophysical Research, 105 (B3), 6057-6064 https://doi.org/10.1029/1999JB900324
  21. Wannamaker, P.E., 2005, Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surveys in Geophysics, 26 (6), 733-765 https://doi.org/10.1007/s10712-005-1832-1
  22. Wannamaker, P.E., Jiracek, GR„ Stodt, J.A., Caldwell, T.G, Porter, A.D., Gonzalez, V.M., and McKnight, J.D., 2002, Fluid generation and movement beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric (MT) data. Journal of Geophysical Research., 107 (B6), doi:10. 1029/ 2001JB000186
  23. Weckmann, U., Ritter, O., and Haak, V., 2003, A magnetotelluric study of the Damara Belt in Namibia 2. MT phases over $90^{\circ}$ the internal structure of the Waterberg Fault/Omaruru Lineament. Physics of the Earth and Planetary Interior., 138 (2), 91-112 https://doi.org/10.1016/S0031-9201(03)00079-7