Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan (Center for Functional Nano Fine Chemicals (Post BK21 Program), Chonnam National University) ;
  • Park, Jung-Soon (Department of Material and Biochemical Engineering, Chonnam National University) ;
  • Hwang, Hyun-Soo (Department of Material and Biochemical Engineering, Chonnam National University) ;
  • Kim, Jin-Chul (School of Biotechnology & Bioengineering, Kangwon National University) ;
  • Lee, Ki-Young (Center for Functional Nano Fine Chemicals (Post BK21 Program), Chonnam National University)
  • Published : 2007.07.31

Abstract

The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

Keywords

References

  1. Altschuh, D., M.-C. Dubs, E. Weiss, G. Zeder-Lutz, and M. H. V. van Regemmortel. 1992. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry 31: 6298-6304 https://doi.org/10.1021/bi00142a019
  2. Atkins, E. D. T. 1985. Polysaccharides: Topics in structure and morphology, pp. 141-182. In D. H. Isaac (ed.), Bacterial Polysaccharides. VCH Verlagsgesellschaft, Weinheim, Germany
  3. Bae, Y. M., K.-W. Park, B.-K. Oh, and J.-W. Choi. 2006. Immunosensor for detection of Escherichia coli O157:H7 using imaging ellipsometry. J. Microbiol. Biotechnol. 16: 1169-1173
  4. Deng, T., H. Wang, J.-S. Li, S.-Q. Hu, G.-L. Shen, and R. Q. Yu. 2004. A novel immunosensor based on self-assembled chitosan/alginate multilayer for the detection of factor B. Sen. Actuators B 99: 123-129 https://doi.org/10.1016/j.snb.2003.11.005
  5. Fagerstram, L. G. 1991. A non-label technology for real-time biospecific interaction analysis, pp. 65- 71. In J. J. Villafranca (ed.), Techniques in Protein Chemistry, vol. II. Academic Press, New York, U.S.A
  6. Fagerstram, L. G. and R. Karlsson. 1991. Biosensor techniques, pp. 949-970. In F. Scheller and R. D. Schmid (eds.), Biosensors: Fundamentals, Techniques, Applications, GBF Monographs, vol. 17. VCH Publishers, Cambridge, England
  7. Holmes, S. D., K. May, V. Johansson, F. Markey, and L. A. Critchley. 1997. Studies on the interaction of Staphylococcus aureus and Staphylococcus epidermidis with fibronectin using surface plasmon resonance (BIAcore). J. Microbiol. Methods 28: 77-84 https://doi.org/10.1016/S0167-7012(96)00967-0
  8. Jonsson, U. 1991. Real-time BIA: A new biosensor based technology for the direct measurement of biomolecular interactions, pp. 467-476. In F. Scheller and R. D. Schmid (eds.), Biosensors: Fundamentals, Techniques, Applications, GBF Monograph, vol. 17. VCH Publishers, Cambridge, England
  9. Joo, J.-H. and J.-W. Yun. 2005. Structural and molecular characterization of extracellular polysaccharides produced by a new fungal strain, Trichoderma erinaceum DG-3 12. J. Microbiol. Biotechnol. 15: 1250-1257
  10. Karlsson, R., A. Michaelsson, and L. Mattersson. 1991. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor-based analytical system. J. Immunol. Methods 145: 229-240 https://doi.org/10.1016/0022-1759(91)90331-9
  11. Lee, J.-H., J. S. Shim, J. S. Lee, M.-K. Kim, M.-S. Chung, and K. H. Kim. 2006. Pectin-like acidic polysaccharide from Panax ginseng with selective anti-adhesive activity against pathogenic bacteria. Carbohydr. Res. 341: 1154-1163 https://doi.org/10.1016/j.carres.2006.03.032
  12. Lofas, S. 1991. Bioanalysis with surface plasmon resonance. Sens. Actuators B 5: 79-84 https://doi.org/10.1016/0925-4005(91)80224-8
  13. Masuda, T., K. Yasumoto, and N. Kiatabatake. 2000. Monitoring the irradiation-induced conformational changes of ovalbumin by using monoclonal antibodies and surface plasmon resonance. Biosci. Biotechnol. Biochem. 64: 710-716 https://doi.org/10.1271/bbb.64.710
  14. Medina, M. B. and P. M. Fratamico. 1988. Binding interactions of collagen I, laminin and fibronectin with immobilized Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol. Tech. 12: 235-240 https://doi.org/10.1023/A:1008829609813
  15. Medina, M. B. 2001. Binding of collagen I to Escherichia coli O157:H7 and inhibition by carrageenans. Int. J. Food Microbiol. 69: 199-208 https://doi.org/10.1016/S0168-1605(01)00497-4
  16. Medina, M. B. 2004. Binding interaction studies of the immobilized Salmonella typhimllrillm with extracellular matrix and muscle proteins, and polysaccharides. Int. J. Food Microbiol. 93: 63-72 https://doi.org/10.1016/j.ijfoodmicro.2003.10.008
  17. Myszka, D. G. and R. L. Rich. 2000. Implementing surface plasmon resonance biosensors in drug discovery. Pharm. Sci. Technol. Today 3: 310-317 https://doi.org/10.1016/S1461-5347(00)00288-1
  18. Myszka, D. G. and R. L. Rich. 2003. SPR's high impact in drug discovery: Resolution, throughput, and versatility. Drug Discov. World Spring: 49-55
  19. Nam, Y. S. and J.-W. Choi. 2006. Fabrication and electrical characteristics of ferredoxin self-assembled layer for biomolecular electronic device application. J. Microbiol. Biotechnol. 16: 15-19
  20. Oh, B.-K., Y.-K. Kim, Y. M. Bae, and W.-H. Lee. 2002. Detection of Escherichia coli O157:H7 using immunosensor based on surface plasmon resonance. J. Microbiol. Biotechnol. 12: 780-786
  21. Park, K.-H., D. M. Kang, and K. Na. 2006. Physicochemical characterization and carcinoma cell interaction of self-organized nanogels prepared from polysaccharide/biotin conjugates for development of anticancer drug carrier. J. Microbiol. Biotechnol. 16: 1369-1376
  22. Robbins, J. B., et al. 1983. Consideration for formulating the second generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J. Infect. Dis. 148: 1136-1158 https://doi.org/10.1093/infdis/148.6.1136
  23. Schiffman, G. 1981. Immune responses to pneumococcal polysaccharide antigens: A comparison of the murine model and the response in humans. Rev. Infect. Dis. 3: 224-232 https://doi.org/10.1093/clinids/3.2.224
  24. Tannock, G. W. 1999. The normal microflora: An introduction, pp. 1-23. In G. W. Tannock (ed.), Medical Importance of the Normal Microflora. Kluwer Academic, Dordrecht, Germany
  25. Wohlhueter, R. M., K. Parekh, V. Udhayakumar, S. Fang, and A. A. Lal. 1994. Analysis binding of monoclonal antibody to a malarial peptide by surface plasmon resonance and integrated rate equations. J. Immunol. 153: 181-189