A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter

DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석

  • Jung, Seung-Chai (Graduate School, Department of Mechanical Engineering, Yonsei University) ;
  • Yoon, Woong-Sup (Department of Mechanical Engineering, Yonsei University)
  • 정승채 (연세대학교 대학원 기계공학과) ;
  • 윤웅섭 (연세대학교 기계공학과)
  • Published : 2007.01.01

Abstract

In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

Keywords

References

  1. J. K. Park and I. S. Chung, 'Trends in Technology of Diesel Particulate Trap System,' Transactions of KSAE, Vol.17, No.3, pp.1-10, 1995
  2. P. Florchinger, M. Anderson, Z. Hou, T. Taubert, E. Steinbrueck and T. Angelo, 'Prediction and Validation of Pressure Drop for Catalyzed Diesel Particulate Filters,' SAE 2003-01-0843, 2003
  3. E. J. Bissett, 'Mathematical Model of the Thermal Regeneration of a Wall-flow Monolith Diesel Particulate Filter,' Chemical Engineering Science, Vol.39, pp.1233-1244, 1984 https://doi.org/10.1016/0009-2509(84)85084-8
  4. A. G. Konstandopoulos and E. Skaperdas, 'Optimized Filter Design and Selection Criteria for Continuously Regeneration Diesel Particulate Traps,' SAE 1999-01-0468, 1999
  5. G. A. Merkel, D. M. Beall, D. L. Hickman and M. J. Vernacotola, 'Effects of Microstructure and Cell Geometry on Performance of Cordierite Diesel Particulate Filters,' SAE 2001-01- 0193, 2001
  6. Y.-I. Chang, S.-C. Chen and E. Lee, 'Prediction of Brownian Particle Deposition in Porous Media Using the Constricted Tube Model,' Journal of Colloid and Interface Science, Vol.266, pp.48-59, 2003 https://doi.org/10.1016/S0021-9797(03)00636-2
  7. F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, 2nd edition, Academic Press, 1992
  8. J. Happel, 'Viscous Flow in Multiparticle Systems: Slow Motion of Fluids Relative to Beds of Spherical Particles,' AIChE Journal, Vol.4, No.2, pp.197-201, 1958 https://doi.org/10.1002/aic.690040214
  9. S. Kuwabara, 'The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers,' J. Phys. Soc. Japan, Vol. 14, pp.527-532, 1959 https://doi.org/10.1143/JPSJ.14.527
  10. G. H. Neale and W. K. Nader, 'Prediction of Transport Processes within Porous Media: Creeping Flow Relative to a Fixed Swarm of Spherical Particles,' AIChE Journal, Vol.20, No.3, pp.530-538, 1974 https://doi.org/10.1002/aic.690200314
  11. A. E. Scheidegger, The Physics of Flow through Porous Media, (3rd edition), University of Toronto Press, 1974
  12. M. Venkatesan and R. Rajagopalan, 'A Hyperboloidal Constricted Tube Model of Porous Media,' AIChE Journal, Vol.26, No.4, pp.694- 698, 1980 https://doi.org/10.1002/aic.690260427
  13. A. G. Konstandopoulos and J. H. Johnson, 'Wall-Flow Diesel Particulate Filters-Their Pressure Drop and Collection Efficiency,' SAE 890405, 1989., 2002
  14. A. G. Konstandopoulos, 'Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing,' SAE 2003-01-0846, 2003
  15. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, Prentice-Hall, New Jersey, 1965
  16. H. Pendse and Chi Tien, 'General Correlation of the Initial Collection Efficiency of Granular Filter Beds,' AIChE Journal Vol.28, Nol.4, pp.677-686, 1982 https://doi.org/10.1002/aic.690280421
  17. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, New Jersey, 1962
  18. R. Pfeffer, 'Heat and Mass Transport in Multiparticle Systems,' I & EC Fundamentals, Vol.3, pp.380-383, 1964 https://doi.org/10.1021/i160012a018
  19. C. Gutfinger and G. I. Tardos, 'Theoretical and Experimental Investigation on Granular Bed Dust Filters,' Atmospheric Environment, Vol.13, pp.853-867, 1979 https://doi.org/10.1016/0004-6981(79)90276-2
  20. G. I. Tardos and C. Gutfinger, 'Prediction of High Peclet Number Mass Transfer in Granular Beds Using The Constricted Tube Model,' AIChE Journal, Vol.25, No.6, pp.1073-1077, 1979 https://doi.org/10.1002/aic.690250619
  21. G. Tardos, N. Abuaf and C. Gutfinger, 'Diffusional Filtration of Dust in a Fluidized Bed,' Atmospheric Environment, Vol.10, pp.389-394, 1976 https://doi.org/10.1016/0004-6981(76)90008-1
  22. H.-W. Chiang and C. Tien, 'Deposition of Brownian Particles in Packed Beds,' Chemical Engineering Science, Vol.37, No.8, pp.1159- 1171, 1982 https://doi.org/10.1016/0009-2509(82)85060-4
  23. P. Fedkiw and J. Newman, 'Mass Transfer at High Peclet Numbers for Creeping Flow in a Packed-Bed Reactor,' AIChE Journal, Vol.23, No.3, pp.255-263, 1977 https://doi.org/10.1002/aic.690230307
  24. M. Venkatesan and R. Rajagopalan, 'A Hyperboloidal Constricted Tube Model of Porous Media,' AIChE Journal, Vol.26, No.4, pp.694-698, 1980 https://doi.org/10.1002/aic.690260427
  25. I. S. Abdul-Khalek, D. B. Kittelson, B. R. Graskow and Q. Wei, 'Diesel Exhaust Particles Size: Measurement Issues and Trends,' SAE 980525, 1998
  26. I. S. Abdul-Khalek and D. B. Kittelson, 'Diesel Trap Performance: Particle Size Measurements and Trends,' SAE 982599, 1998
  27. Z. G. Liu, B. M. Verdegan, K. M. A. Badeau and T. P. Sonsalla, 'Measuring the Fractional Efficiency of Diesel Particulate Filters,' SAE 2002-01-1007, 2002
  28. Z. G. Liu, M. D. Skemp and J. C. Lincoln, 'Diesel Particulate Filters: Trends and Implications of Particle Size Distribution Measurement,' SAE 2003-01-0046, 2003
  29. Z. G. Liu, E. M. Thurow, R. Caldow and T. R. Johnson, 'Transient Performance of Diesel Particulate Filters as Measured by an Engine Exhaust Particle Size Spectrometer,' SAE 2005-01-0185, 2005
  30. J. S. MacDonald, 'The Effect of Operation Conditions on the Effluent of a Wall-Flow Monolith Particulate Trap,' SAE 831711, 1983
  31. K. J. Baumgard and D. B. Kittelson, 'The Influence of a Ceramic Particulate Trap on the Size Distribution of Diesel Particles,' SAE 850009, 1985