Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Published : 2007.08.30

Abstract

Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Keywords

References

  1. Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826-1831
  2. Bernfeld, P. 1955. Amylases, $\alpha$ and $\beta$. Meth. Enzymol. 1: 149-158 https://doi.org/10.1016/0076-6879(55)01021-5
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brown, S. H. and R. M. Kelly. 1993. Characterization of amylolytic enzymes, having both $\alpha$-1,4 and $\alpha$-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 59: 2614-2621
  5. Choi, J. Y., J. O. Ahn, and H. J. Shin. 2006. Expression of thermostable $\alpha$-glucosidase from Thermus caldophilus GK24 in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 2000-2003
  6. Chung, Y. C., T. Kobayashi, H. Kanai, T. Akiba, and T. Kudo. 1995. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl. Environ. Microbiol. 61: 1502-1506
  7. Dong, G., C. Vieille, A. Savchenko, and J. G. Zeikus. 1997. Cloning, sequencing, and expression of the gene encoding extracellular $\alpha$-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3569-3576
  8. Emtiazi, G. and I. Nahvi. 2004. Production of thermostable $\alpha$-amylase and cellulase from Cellulomonas sp. J. Microbiol. Biotechnol. 14: 1196-1199
  9. Frillingos, S., A. Linden, F. Niehaus, C. Vargas, J. J. Nieto, A. Ventosa, G. Antranikian, and C. Drainas. 2000. Cloning and expression of $\alpha$-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J. Appl. Microbiol. 88: 495-503 https://doi.org/10.1046/j.1365-2672.2000.00988.x
  10. Han, Y. J. and T. S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean Nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
  11. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316 https://doi.org/10.1042/bj2800309
  12. Jorgensen S., C. E. Vorgias, and G. Antranikian. 1997. Cloning, sequencing, characterization, and expression of an extracellular $\alpha$-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 272: 16335-16342 https://doi.org/10.1074/jbc.272.26.16335
  13. Koch, R., K. Spreinat, K. Lemke, and G. Antranikian. 1991. Purification and properties of a hyperthermoactive $\alpha$-amylase from the archaeobacterium Pyrococcus woesei. Arch. Microbiol. 155: 572-578 https://doi.org/10.1007/BF00245352
  14. Laderman, K. A., B. R. Davis, H. C. Krutzsch, M. S. Lewis, Y. V. Griko, P. L. Privalov, and C. B. Anfinsen. 1993. The purification and characterization of an extremely thermostable $\alpha$-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268: 24394-24401
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  16. Lee, J. H., G. Kim, S. H. Kim, D. L. Cho, D. W. Kim, D. F. Day, and D. Kim. 2006. Treatment with glucanhydrolase from Lipomyces starkeyi for removal of soluble polysaccharides in sugar processing. J. Microbiol. Biotechnol. 16: 983-987
  17. Lee, J. T., H. Kanai, T. Kobayashi, T. Akiba, and T. Kudo. 1996. Cloning and nucleotide sequence and hyperexpression of $\alpha$-amylase gene from an archaeon, Thermococcus profundus. J. Ferment. Bioeng. 82: 432-438 https://doi.org/10.1016/S0922-338X(97)86978-4
  18. Leveque, E., S. Janecek, B. Haye, and A. Belarbi. 2000. Cloning and expression of an $\alpha$-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol. Lett. 186: 67-71
  19. Leveque, E., S. Janecek, B. Haye, and A. Belarbi. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microbiol. Technol. 26: 3-14 https://doi.org/10.1016/S0141-0229(99)00142-8
  20. Linden A., O. Mayans, W. M. Klaucke, G. Antanikian, and M. Wilmanns. 2003. Differential regulation of a hyperthermophilic $\alpha$-amylase with a novel (Ca,Zn) two-metal center by zinc. J. Biol. Chem. 278: 9875-9884 https://doi.org/10.1074/jbc.M211339200
  21. Morgan, F. J. and F. G. Priest. 1981. Characterization of a thermostable $\alpha$-amylase from Bacillus licheniformis NCIB6346. J. Appl. Bacteriol. 50: 107-114 https://doi.org/10.1111/j.1365-2672.1981.tb00875.x
  22. Nakajima, R., T. Imanaka, and S. Aiba. 1986. Comparison of amino acid sequences of eleven different $\alpha$-amylases. Appl. Microbiol. Biotechnol. 23: 355-360
  23. Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152 https://doi.org/10.1042/BA19990073
  24. Park J. N., D. J. Shin, H. O. Kim, D. H. Kim, H. B. Lee, S. B. Chun, and S. Bai. 1999. Expression of Schwanniomyces occidentalis $\alpha$-amylase gene in Saccharomyces cerevisiae var. diastaticus. J. Microbiol. Biotechnol. 9: 668-671
  25. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N
  26. Savchenko, A., C. Vieille, S. Kang, and J. G. Zeikus. 2002. Pyrococcus furiosus $\alpha$-amylase is stabilized by calcium and zinc. Biochemistry 41: 6193-6201 https://doi.org/10.1021/bi012106s
  27. Seo, J.-S., J. H. An, M. Y. Baik, C. S. Park, J. J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129
  28. Tachibana, Y., M. M. Leclere, S. Fujiwara, M. Takagi, and T. Imanaka. 1996. Cloning and expression of the $\alpha$-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J. Ferment. Bioeng. 82: 224-232 https://doi.org/10.1016/0922-338X(96)88812-X
  29. Tomazic, S. J. and A. M. Klibanov. 1988. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263: 3086-3096
  30. van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155 https://doi.org/10.1016/S0168-1656(01)00407-2
  31. Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418 https://doi.org/10.3109/10409238909082556