A Study on the Surface Hardening of SCM4 Steel Using a Continuous Wave Nd:YAG Laser

연속파형 Nd:YAG 레이저를 이용한 SCM4강의 표면경화에 관한 연구

  • 나기대 (조선대학교 기계설계공학과) ;
  • 신병헌 (조선대학교 일반대학원 정밀기계공학과) ;
  • 신호준 (조선대학교 일반대학원 정밀기계공학과) ;
  • 유영태 (조선대학교 메카트로닉스공학과)
  • Published : 2007.10.15

Abstract

Laser surface hardening is beneficially used for surface treatment of structural steel. Due to very rapid heating and cooling rates, structural low-alloy steel(SCM4) can be hardened as self quenching. The aim of this research project is to improve the influence of the process laser parameters: laser power, spot size, surface roughness, and traverse speed. The laser beam is allowed to scan on the surface of the workpiece at the constant power(1095W), varying the traverse speed at 0.3m/min, 0.5m/min and 0.8m/min. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with uniform hardness. From the results of the experiment, it has been shown that the stable hardness is about 600$\sim$700Hv, when the laser power, focal position and the traverse speed are P=1095W, z=0mm and v=0.3m/min.

Keywords

References

  1. Kim, J. D., Jung, J. K., Jeon, B. C. and Cho, C. D., 2001, 'Wide band laser heat treatment using pyramid polygon mirror,' Optics and Lasers in Engineering, Vol. 35, pp. 285-297 https://doi.org/10.1016/S0143-8166(01)00018-5
  2. John, E. H., Michelle, G. K. and Angela, L. M., 2006, 'Property and microstructure evaluation as a function of processing parameters : Large HY-80 steel casting for a US Navy submarine,' Engineering Failure Analysis, Vol. 13, pp. 1397-1409 https://doi.org/10.1016/j.engfailanal.2005.10.004
  3. Kulla, M. and Pertek, A., 2004, 'Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification,' Applied Surface Science, Vol. 236, pp. 98-105 https://doi.org/10.1016/j.apsusc.2004.04.005
  4. Kulla, M. and Pertek, A., 2003, 'Microstructure and properties of borieded 41Cr4 steel after laser surface modification with re-melting,' Applied Surface Science, Vol. 214, pp. 278-288 https://doi.org/10.1016/S0169-4332(03)00500-2
  5. Grum, J. and Sturm, R., 1997, 'Laser surface melt-hardening of gray and nodular irons,' Applied Surface Science, Vol. 109/110, pp. 128-132 https://doi.org/10.1016/S0169-4332(96)00648-4
  6. Grum, J. and Slabe, J. M., 2005, 'Nonoscale evaluation of laser-based surface treated 12Ni maraging steel,' Applied Surface Science, Vol. 247, pp. 458-465 https://doi.org/10.1016/j.apsusc.2005.01.046
  7. Hirogaki, T., Nakagawa, H., Hayamizu, M., kita, Y. and Kakino, Y., 2001, 'In-situ heat treatment system for die steels using YAG laser with a machining center,' Precision Engineering, Vol. 25, pp. 212-217 https://doi.org/10.1016/S0141-6359(01)00072-1
  8. Na, G. D., Yoo, Y. T., Shin, H. J. and Shin, B. H., 2006, 'Characteristics Induction and Laser Surface hardening of SM45C Steel,' Journal of the Korean Society of Precision Engineering, Vol. 23, pp. 39-50
  9. Heitkemper, M., Bohne, C., Pyzalla, A. and Fisher, A., 2003, 'Fatigue and fracture behaviour of a laser surface heat treated martensitic high-nitrogen tool steel,' International Journal of Fatigue, Vol. 25, pp. 101-106 https://doi.org/10.1016/S0142-1123(02)00074-9
  10. Mo, Y. W., Yoo, Y. T., Shin, B. H. and Shin, H. J., 2006, 'Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding,' KSMTE, Vol. 15, No. 2, pp. 51-58
  11. Gutu, I., Petre, C., Mihailescu, I. N., Taca, M., Alexandrescu, E. and Ivanov, I., 2002, 'Surface treatment with linearly polarized laser beam at oblique incidence,' Optics & Laser Technology, Vol. 34, pp. 381-388 https://doi.org/10.1016/S0030-3992(02)00032-4