Radiosynthesis of $[^{11}C]6-OH-BTA-1$ in Different Media and Confirmation of Reaction By-products.

$[^{11}C]6-OH-BTA-1$ 조제 시 생성되는 부산물 규명과 반응용매에 따른 표지 효율 비교

  • Lee, Hak-Jeong (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Jeong, Jae-Min (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Hyung-Woo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Eun-Kyoung (Clinical Research Institute, Seoul National University Hospital) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 이학정 (서울대학교 의과대학 핵의학교실) ;
  • 정재민 (서울대학교 의과대학 핵의학교실) ;
  • 이윤상 (서울대학교 의과대학 핵의학교실) ;
  • 김형우 (서울대학교 의과대학 핵의학교실) ;
  • 이은경 (서울대학교병원 임상의학연구소) ;
  • 이동수 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 이명철 (서울대학교 의과대학 핵의학교실)
  • Published : 2007.06.30

Abstract

Purpose: $[^{11}C]6-OH-BTA-1$ ([N-methyl-$^{11}C$]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole, 1), a -amyloid imaging agent for the diagnosis of Alzheimer's disease in PET, can be labeled with higher yield by a simple loop method. During the synthesis of $[^{11}C]1$, we found the formation of by-products in various solvents, e.g., methylethylketone (MEK), cyclohexanone (CHO), diethylketone (DEK), and dimethylformamide (DMF). Materials and Methods: In Automated radiosynthesis module, 1 mg of 4-aminophenyl-6-hydroxybenzothiazole (4) in 100 l of each solvent was reacted with $[^{11}C]methyl$ triflate in HPLC loop at room temperature (RT). The reaction mixture was separated by semi-preparative HPLC. Aliquots eluted at 14.4, 16.3 and 17.6 min were collected and analyzed by analytical HPLC and LC/MS spectrometer. Results: The labeling efficiencies of $[^{11}C]1$ were $86.0{\pm}5.5%$, $59.7{\pm}2.4%$, $29.9{\pm}1.8%$, and $7.6{\pm}0.5%$ in MEK, CHO, DEK and DMF, respectively. The LC/MS spectra of three products eluted at 14.4, 16.3 and 17.6 mins showed m/z peaks at 257.3 (M+1), 257.3 (M+1) and 271.3 (M+1), respectively, indicating their structures as 1, 2-(4'-aminophenyl)-6-methoxybenzothiazole (2) and by-product (3), respectively. Ratios of labeling efficiencies for the three products $([^{11}C]1:[^{11}C]2:[^{11}C]3)$ were $86.0{\pm}5.5%:5.0{\pm}3.4%:1.5{\pm}1.3%$ in MEK, $59.7{\pm}2.4%:4.7{\pm}3.2%:1.3{\pm}0.5%$ in CHO, $9.9{\pm}1.8%:2.0{\pm}0.7%:0.3{\pm}0.1%$ in DEK and $7.6{\pm}0.5%:0.0%:0.0%$ in DMF, respectively. Conclusion: The labeling efficiency of $[^{11}C]1$ was the highest when MEK was used as a reaction solvent. As results of mass spectrometry, 1 and 2 were conformed. 3 was presumed.

목적: 베타아밀66로이드 양전자단층촬영 영상 추적자인 $[^{11}C]OH-BTA-1(1)$는 알쯔하이머병의 진단용으로 개발되었다. 반응용매 루프 방법에 의한 $[^{11}C]1$$[^{11}C]MeOTf$를 통해서 한번의 반응으로 $^{11}C$을 바로 표지 할 수 있다. 또한 반응 중에 $[^{11}C]2$가 생긴다는 것이 보고된바 있다. 하지만, 실험 중에 다른 부산물이 생기는 것이 발견되어 그 물질을 추정하고, 각 반응용매에 따른 $[^{11}C]1$과 부산물의 표지효율 변화에 대한 조사를 했다. 대상 및 방법: 사이클로트론에서 $^{14}N(p,{\alpha})^{11}C$ 핵반응과 미량의 $O_2$로 부터 의하여 생산되는 $[^{11}C]CO_2$를 0.2 M $LiAlH_4/THF$ 0.2 ml로 환원한 다음 HI 1ml과 반응하여 $[^{11}C]CH_3I$를 생산했다. 질소가스를 20 ml/min로 불어 주면서 200C 에서 AgOTf-Graphpac GC column를 통과시켜 $[^{11}C]CH_3OTf$를 생산했다. 각 반응용매 (MEK, CHO, DEK, DMF) 100 1에 녹인 전구물질 1 mg를 고성능 액체 크로마토그래피 시료 루프에 미리 주입하고 $[^{11}C]CH_3OTf$를 상온에서 7분 동안 질소가스를 불어줬다. Semi-preparative HPLC로 분리하였다. 결과: 각 반응용매에서 $[^{11}C]1$에 표지효율은 MEK: $86.0{\pm}5.5%$, CHO: $59.7{\pm}2.4%$, DEK: $29.9{\pm}1.8%$, DMF: $7.6{\pm}0.5%$이었다. MEK에서 얻은 $[^{11}C]1$의 비방사능은 98 ($GBq/{\mu}mol$)이다. 각 물질의 질량 분석은 1: m/z 257.3 (M+1), 2: 257.3 (M+1), 3: 271.3 (M+1)이었다. 각 생성물질의 표지효율은 MEK에서 $86.0{\pm}5.5%:5.0{\pm}3.4%:1.5{\pm}1.3%$ $([^{11}C]1:[^{11}C]2:[^{11}C]3)$, CHO에서 $59.7{\pm}2.4%:4.7{\pm}3.2%:1.3{\pm}0.5%$, DEK에서 $29.9{\pm}1.8%:2.0{\pm}0.7%:0.3{\pm}0.1%$, DMF에서 $7.6{\pm}0.5%:0.0%:0.0%$이다. 결론: $[^{11}C]1$은 4가지 반응용매 중 MEK 반응용매에서 가장 높은 표지효율을 나타냈다. 부산물인 $[^{11}C]3$은 고성능 액체 크로마토그래피의 자외선, 방사능 검출기와 질량 분석법을 통해 물질을 추정할 수 있었다.

Keywords

References

  1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-59 https://doi.org/10.1007/BF00308809
  2. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991;41:479-86 https://doi.org/10.1212/WNL.41.4.479
  3. Klunk WE, Abraham DJ. Filamentous proteins in Alzheimer's disease: new insights through molecular biology. Psych Dev 1988;6:121-52
  4. Schenk DB, Rydel RE, May P, Little S, Panetta J, Lieberburg I, et al. Therapeutic approaches related to amyloid-beta peptide and Alzheimer's disease. J Med Chem 1995;38:4141-54 https://doi.org/10.1021/jm00021a001
  5. Schenk DB, Seubert P, Lieberburg I, Wallace J. {beta}-Peptide Immunization: A Possible New Treatment for Alzheimer Disease. Arch Neurol 2000;57:934-6 https://doi.org/10.1001/archneur.57.7.934
  6. Holtzman DM, Bales KR, Paul SM, DeMattos RB. A[beta] immunization and anti-A[beta] antibodies: potential therapies for the prevention and treatment of Alzheimer's disease. Advan Drug Delivery Rev 2002;54:1603-13 https://doi.org/10.1016/S0169-409X(02)00158-8
  7. Olson RE, Copeland RA, Seiffert D. Progress towards testing the amyloid hypothesis: inhibitors of APP processing. Curr Op Drug Disc Dev 2001;4:390-401
  8. Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, et al. Novel Therapeutic Approach for the Treatment of Alzheimer's Disease by Peripheral Administration of Agents with an Affinity to beta -Amyloid. J Neurosci 2003;23:29-33 https://doi.org/10.1523/JNEUROSCI.23-01-00029.2003
  9. Klunk WE, Wang Y, Huang G-f, Debnath ML, Holt DP, Mathis CA. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 2001;69: 1471-84 https://doi.org/10.1016/S0024-3205(01)01232-2
  10. Mathis CA, Holt DP, Wang Y, Huang GF, Debmath ML, Klunk WE. Lipophilic $^{11}$C-labelled thioflavin-T analogues for imaging amyloid plaques in Alzheimer's disease. J Labelled Compd Radiopharm 2001;44:S26-S8 https://doi.org/10.1002/jlcr.2580440110
  11. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 2002;12:295-8 https://doi.org/10.1016/S0960-894X(01)00734-X
  12. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and Evaluation of 11C-Labeled 6-Substituted 2-Arylbenzothiazoles as Amyloid Imaging Agents. J Med Chem 2003;46:2740-54 https://doi.org/10.1021/jm030026b
  13. Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci USA 2003;100:12462-7 https://doi.org/10.1073/pnas.2034101100
  14. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306-19 https://doi.org/10.1002/ana.20009
  15. DeKosky ST, Marek K. Looking Backward to Move Forward: Early Detection of Neurodegenerative Disorders. Science 2003;302: 830-4 https://doi.org/10.1126/science.1090349
  16. Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP, Abrahamson EE, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. J Neurosci 2005;25:10598-606 https://doi.org/10.1523/JNEUROSCI.2990-05.2005
  17. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005;25:1528-47 https://doi.org/10.1038/sj.jcbfm.9600146
  18. Solbach C, Uebele M, Reischl G, Machulla HJ. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for [beta]-amyloid imaging in Alzheimer's Disease with PET. Appl Radiat Isot 2005;62:591-5 https://doi.org/10.1016/j.apradiso.2004.09.003
  19. Wilson AA, Garcia A, Chestakova A, Kung H, Houle S. A rapid one-step radiosynthesis of the b-amyloid imaging radiotracer N-methyl-[$^{11}$C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole ([$^{11}$C]-6-OH-BTA-1). J Labelled Cpd Radiopharm 2004;47:679-82 https://doi.org/10.1002/jlcr.854
  20. Iwata R, Pascali C, Bogni A, Miyake Y, Yanai K, Ido T. A simple loop method for the automated preparation of [$^{11}$C]raclopride from [$^{11}$C]methyl triflate. Appl Radiat Isot 2001;55:17-22 https://doi.org/10.1016/S0969-8043(00)00368-7
  21. Jewett DM. A simple synthesis of [$^{11}$C]methyl triflate. Appl Radiat Isot 1992;43:1383-5 https://doi.org/10.1016/0883-2889(92)90012-4
  22. Choe YS. Radiolabeling Methods Used for Preparation of Molecular Probes. Korean J Nucl Med 2004;38:121-30