Methodological Review on Functional Neuroimaging Using Positron Emission Tomography

뇌기능 양전자방출단층촬영영상 분석 기법의 방법론적 고찰

  • Park, Hae-Jeong (Department of Nuclear Medicine, Yonsei University, College of Medicine)
  • 박해정 (연세대학교 의과대학 진단방사선과학교실 핵의학과)
  • Published : 2007.04.30

Abstract

Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

Keywords

References

  1. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: A general approach. Hum Brain Mapp 1995;2:189-210 https://doi.org/10.1002/hbm.460020402
  2. Sun FT, Schriber RA, Greenia JM, He J, Gitcho A, Jagust WJ. Automated template-based PET region of interest analyses in the aging brain. NeuroImage 15 2007;34:608-17
  3. Gispert JD, Pascau J, Reig S, et al. Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. NeuroImage 2003;19:601-12 https://doi.org/10.1016/S1053-8119(03)00072-7
  4. Park HJ, Levitt J, Shenton ME, et al. An MRI study of spatial probability brain map differences between first-episode schizophrenia and normal controls. NeuroImage 2004;22:1231-46 https://doi.org/10.1016/j.neuroimage.2004.03.009
  5. Muzik O, Chugani DC, Juhasz C, Shen C, Chugani HT. Statistical parametric mapping: assessment of application in children. NeuroImage 2000;12:538-49 https://doi.org/10.1006/nimg.2000.0651
  6. Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM. Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 2002;16:228-50 https://doi.org/10.1002/hbm.10047
  7. Ishii K, Willoch F, Minoshima S, et al. Statistical brain mapping of 18F-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains. J Nucl Med 2001;42:548-57
  8. Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RS. The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 1990;10:458-66 https://doi.org/10.1038/jcbfm.1990.88
  9. Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 1988;8:642-53 https://doi.org/10.1038/jcbfm.1988.111
  10. Andersson JL. How to estimate global activity independent of changes in local activity. NeuroImage 1997;6:237-44 https://doi.org/10.1006/nimg.1997.0302
  11. Aguirre GK, Zarahn E, D'Esposito M. The inferential impact of global signal covariates in functional neuroimaging analyses. NeuroImage 1998;8:302-6 https://doi.org/10.1006/nimg.1998.0367
  12. Andersson JL, Ashburner J, Friston K. A global estimator unbiased by local changes. NeuroImage 2001;13(6 Pt 1):1193-206
  13. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. Journal of Computer Assisted Tomography 1979;3:299-308 https://doi.org/10.1097/00004728-197906000-00001
  14. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904-11
  15. Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 2004;45:192-201
  16. Rousset OG, Ma Y, Wong DF, Evans AC. Pixel- versus region-based partial volume correction in PET. In: Carson RE, Herscovitch P, Daube-Witherspoon M, eds. Quantitative Functional Brain Imaging with Positron Emission Tomography San Diego, CA: Academic Press; 1998:67-75
  17. Zaidi H, Ruest T, Schoenahl F, Montandon ML. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. NeuroImage 1 2006;32:1591-607 https://doi.org/10.1016/j.neuroimage.2006.05.031
  18. Muzik O, Chugani DC, Shen C, et al. Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput Aided Surg 1998;3:74-82 https://doi.org/10.3109/10929089809148132
  19. Draghici S. Application of an objective method for localizing bilateral cortical FDG PET abnormalities to guide the resection of epileptic foci. IEEE transactions on bio-medical engineering 2005;52:1574-81 https://doi.org/10.1109/TBME.2005.854233
  20. Park HJ, Lee JD, Chun JW, et al. Cortical surface-based analysis of 18F-FDG PET: measured metabolic abnormalities in schizophrenia are affected by cortical structural abnormalities. NeuroImage 15 2006;31:1434-44 https://doi.org/10.1016/j.neuroimage.2006.02.001
  21. Horwitz B. Functional interactions in the brain: use of correlations between regional metabolic rates. J Cereb Blood Flow Metab 1991;11:A114-20 https://doi.org/10.1038/jcbfm.1991.13
  22. Kim JJ, Ho Seok J, Park HJ, Soo Lee D, Chul Lee M, Kwon JS. Functional disconnection of the semantic networks in schizophrenia. Neuroreport 15 2005;16:355-9
  23. Moeller JR, Strother SC. A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 1991;11:A121-35 https://doi.org/10.1038/jcbfm.1991.47
  24. Park HJ, Kim JJ, Youn T, Lee DS, Lee MC, Kwon JS. Independent component model for cognitive functions of multiple subjects using [15O]H2O PET images. Hum Brain Mapp 2003;18:284-95 https://doi.org/10.1002/hbm.10085
  25. Buchsbaum MS, Tang CY, Peled S, et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 16 1998;9:425-30 https://doi.org/10.1097/00001756-200504040-00002
  26. Kim J, Lee SK, Lee JD, Kim YW, Kim DI. Decreased fractional anisotropy of middle cerebellar peduncle in crossed cerebellar diaschisis: diffusion-tensor imaging-positron-emission tomography correlation study. AJNR 2005;26(9):2224-8
  27. Lee JD, Park HJ, Park ES, et al. Assessment of regional GABA(A) receptor binding using 18F-fluoroflumazenil positron emission tomography in spastic type cerebral palsy. NeuroImage 1 2007;3 4:19-25
  28. Lee SK, Kim DI, Mori S, Kim J, Kim HO, Heo K, et al. Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. NeuroImage 2004;22:1826-9 https://doi.org/10.1016/j.neuroimage.2004.04.028
  29. Lee JS, Narayana S, Lancaster J, Jerabek P, Lee DS, Fox P. Positron emission tomography during transcranial magnetic stimulation does not require micro-metal shielding. NeuroImage 2003;19:1812-9 https://doi.org/10.1016/S1053-8119(03)00239-8
  30. Knoch D, Treyer V, Regard M, Muri RM, Buck A, Weber B. Lateralized and frequency-dependent effects of prefrontal rTMS on regional cerebral blood flow. NeuroImage 2006;31:641-8 https://doi.org/10.1016/j.neuroimage.2005.12.025
  31. Fox PT, Narayana S, Tandon N, Fox SP, Sandoval H, Kochunov P, et al. Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Hum Brain Mapp 2006;27:478-87 https://doi.org/10.1002/hbm.20192
  32. Plewnia C, Reimold M, Najib A, Brehm B, Reischi G, PlontkeS K, et al. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 2007;28: 238-46 https://doi.org/10.1002/hbm.20270
  33. Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, et al. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage 2004;22:637-44 https://doi.org/10.1016/j.neuroimage.2004.01.047
  34. Gamma A, Lehmann D, Frei E, Iwata K, Pascual-Marqui RD, Vollenweider FX. Comparison of simultaneously recorded [H2(15)O]-PET and LORETA during cognitive and pharmacological activation. Hum Brain Mapp 2004;22:83-96 https://doi.org/10.1002/hbm.20015
  35. Horwitz B, Poeppel D. How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 2002;17:1-3 https://doi.org/10.1002/hbm.10057
  36. Oakes TR, Pizzagalli DA, Hendrick AM, et al. Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum Brain Mapp 2004;21:257-70 https://doi.org/10.1002/hbm.20004
  37. Park HJ, Kwon JS, Youn T, et al. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia. Hum Brain Mapp 2002;17:168-78 https://doi.org/10.1002/hbm.10059