Characterization of an Extracellular Lipase in Burkholderia sp. HY-10 Isolated from a Longicorn Beetle

  • Park, Doo-Sang (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hyun-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Heo, Sun-Yeon (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Won-Jin (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Dong-Ha (Insect Biotech Co. Ltd.) ;
  • Bae, Kyung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Ho-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.10.30

Abstract

Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and $60^{\circ}C$. A broad range of lipase substrates, from $C_4\;to\;C_{18}$ p-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was p-nitrophenyl caproate ($C_6$). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family 1.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, $Ser^{131},\;His^{330},\;and\;Asp^{308}$, which composed the catalytic triad of the enzyme.

Keywords

References

  1. Bevivino, A., C. Dalmastri, S. Tabacchioni, and L. Chiarini. 2000. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils 31, 225-231 https://doi.org/10.1007/s003740050649
  2. Carvalho, A.P., G.M. Ventura, C.B. Pereira, R.S. Leao, T.W. Folescu, L. Higa, L.M. Teixeira, M.C. Plotkowski, V.L. Merquior, R.M. Albano, and E.A. Marques. 2007. Burkholderia cenocepacia, B. multivorans, B. ambifaria and B. vietnamiensis isolates from cystic fibrosis patients have different profiles of exoenzyme production. Apmis 115, 311-318 https://doi.org/10.1111/j.1600-0463.2007.apm_603.x
  3. Chiarini, L., A. Bevivino, C. Dalmastri, S. Tabacchioni, and P. Visca. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 14, 277-286 https://doi.org/10.1016/j.tim.2006.04.006
  4. Cristobal, S., J.W. De Gier, H. Nielsen, and G. Von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Embo J. 18, 2982-2990 https://doi.org/10.1093/emboj/18.11.2982
  5. Dunphy, G., C. Miyamoto, and E. Meighen. 1997. A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). J. Bacteriol. 179, 5288-5291 https://doi.org/10.1128/jb.179.17.5288-5291.1997
  6. Federal-Register. 2003. Burhkolderia cepacia complex; significant new use rule. Section 5(a) (2) of the Toxic Substances Control Act (TSCA). 68, 35315-35320
  7. Fiore, A., S. Laevens, A. Bevivino, C. Dalmastri, S. Tabacchioni, P. Vandamme, and L. Chiarini. 2001. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ. Microbiol. 3, 137-143 https://doi.org/10.1046/j.1462-2920.2001.00175.x
  8. Frenken, L.G., J.W. Bos, C. Visser, W. Muller, J. Tommassen, and C.T. Verrips. 1993. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol. Microbiol. 9, 579-589 https://doi.org/10.1111/j.1365-2958.1993.tb01718.x
  9. Frenken, L.G., M.R. Egmond, A.M. Batenburg, J.W. Bos, C. Visser, and C.T. Verrips. 1992. Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Appl. Environ. Microbiol. 58, 3787-3791
  10. Fries, M.R., L.J. Forney, and J.M. Tiedje. 1997. Phenol- and toluenedegrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63, 1523-1530
  11. Fuqua, C. and E.P. Greenberg. 2002. Listening in on bacteria: acylhomoserine lactone signalling. Nat. Rev. Mol. Cell. Biol. 3, 685-695 https://doi.org/10.1038/nrm907
  12. Gupta, N., P. Rathi, R. Singh, V.K. Goswami, and R. Gupta. 2005. Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix. Appl. Microbiol. Biotechnol. 67, 648-653 https://doi.org/10.1007/s00253-004-1856-3
  13. Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763-781 https://doi.org/10.1007/s00253-004-1568-8
  14. Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Panibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759
  15. Jaeger, K.E., B.W. Dijkstra, and M.T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351 https://doi.org/10.1146/annurev.micro.53.1.315
  16. Jaeger, K.E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  17. Jaeger, K.E., S. Ransac, B.W. Dijkstra, C. Colson, M. Van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  18. Jorgensen, S., K.W. Skov, and B. Diderichsen. 1991. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J. Bacteriol. 173, 559-567 https://doi.org/10.1128/jb.173.2.559-567.1991
  19. Kim, H.K. 2003. Molecular structures and catalytic mechanism of bacterial lipases. Kor. J. Microbiol. Biotechnol. 31, 311-321
  20. Kim, K.K., H.K. Song, D.H. Shin, K.Y. Hwang, and S.W. Suh. 1997. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5, 173-185 https://doi.org/10.1016/S0969-2126(97)00177-9
  21. Kinya, K., S. Kozaki, and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20, 459-462 https://doi.org/10.1023/A:1005432027603
  22. Kwak, J., K. Lee, D.H. Shin, J.S. Maeng, D.S. Park, H.W. Oh, K.S. Bae, and H.Y. Park. 2007. Biochemical and genetic characterization of an extracellular metalloprotease produced from Serratia proteamaculans. J. Microbiol. Biotechnol. 17, 761-768
  23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  24. Lee, E.Y. 2003. Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system. J. Biosci. Bioeng. 96, 572-574 https://doi.org/10.1016/S1389-1723(04)70151-6
  25. Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae, and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40, 269-274
  26. Lewenza, S., B. Conway, E.P. Greenberg, and P.A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181, 748-756
  27. Miller, S.C., J.J. LiPuma, and J.L. Parke. 2002. Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl. Environ. Microbiol. 68, 3750-3758 https://doi.org/10.1128/AEM.68.8.3750-3758.2002
  28. Noble, M.E., A. Cleasby, L.N. Johnson, M.R. Egmond, and L.G. Frenken. 1993. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331, 123-128 https://doi.org/10.1016/0014-5793(93)80310-Q
  29. Ollis, D.L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S.M. Franken, M. Harel, S.J. Remington, I. Silman, and J. Schrag. 1992. The alpha/beta hydrolase fold. Protein Eng. 5, 197-211 https://doi.org/10.1093/protein/5.3.197
  30. Pandey, A., S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger, and V.T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119-131
  31. Park, D.S., H.W. Oh, H. Kim, S.Y. Heo, N. Kim, K.Y. Seol, and H.Y. Park. 2007. Screening of bacteria producing lipase from insect gut: isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase. Kor. J. Appl. Entomol. 46, 131-139 https://doi.org/10.5656/KSAE.2007.46.1.131
  32. Rathi, P., S. Bradoo, P.K. Saxena, and R. Gupta. 2000. A hyperthermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22, 495-498 https://doi.org/10.1023/A:1005604617440
  33. Rathi, P., P.K. Saxena, and R. Gupta. 2001. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37, 187-192 https://doi.org/10.1016/S0032-9592(01)00200-X
  34. Reetz, M.T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6, 145-150 https://doi.org/10.1016/S1367-5931(02)00297-1
  35. Reik, R., T. Spilker, and J.J. Lipuma. 2005. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol. 43, 2926-2928 https://doi.org/10.1128/JCM.43.6.2926-2928.2005
  36. Reimmann, C., M. Beyeler, A. Latifi, H. Winteler, M. Foglino, A. Lazdunski, and D. Haas. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol. 24, 309-319 https://doi.org/10.1046/j.1365-2958.1997.3291701.x
  37. Rosenau, F. and K. Jaeger. 2000. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023-1032 https://doi.org/10.1016/S0300-9084(00)01182-2
  38. Rosenau, F., J. Tommassen, and K.E. Jaeger. 2004. Lipase-specific foldases. Chembiochem 5, 152-161 https://doi.org/10.1002/cbic.200300761
  39. Ryu, H.S., H.K. Kim, W.C. Choi, M.H. Kim, S.Y. Park, N.S. Han, T.K. Oh, and J.K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70, 321-326 https://doi.org/10.1007/s00253-005-0058-y
  40. Sandkvist, M. 2001. Biology of type II secretion. Mol. Microbiol. 40, 271-283 https://doi.org/10.1046/j.1365-2958.2001.02403.x
  41. Speert, D.P. 2001. Understanding Burkholderia cepacia: epidemiology, genomovars, and viruence. Infect. Med. 18, 49-56
  42. Sugihara, A., M. Ueshima, Y. Shimada, S. Tsunasawa, and Y. Tominaga. 1992. Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem. (Tokyo) 112, 598-603 https://doi.org/10.1093/oxfordjournals.jbchem.a123946
  43. Sullivan, E.R., J.G. Leahy, and R.R. Colwell. 1999. Cloning and sequence analysis of the lipase and lipase chaperone-encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a proteobacterial lipase family and an analogous lipase chaperone family. Gene 230, 277-286 https://doi.org/10.1016/S0378-1119(99)00026-8
  44. Tran Van, V., O. Berge, S. Ngo Ke, J. Balanderau, and T. Heulin. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield component in low fertility sulphate acid soils of Vietnam. Plant Soil 218, 273-284 https://doi.org/10.1023/A:1014986916913
  45. Vermis, K., M. Brachkova, P. Vandamme, and H. Nelis. 2003. Isolation of Burkholderia cepacia complex genomovars from waters. Syst. Appl. Microbiol. 26, 595-600 https://doi.org/10.1078/072320203770865909
  46. Von Heijne, G. 1986. Net N-C charge imbalance may be important for signal sequence function in bacteria. J. Mol. Biol. 192, 287-290 https://doi.org/10.1016/0022-2836(86)90365-7
  47. Weissfloch, A. and A. Kazalauskas. 1995. Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols. J. Org. Chem. 60, 1258-1262
  48. Whitehead, N.A., A.M. Barnard, H. Slater, N.J. Simpson, and G.P. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365-404 https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  49. Whiteley, M. and E.P. Greenberg. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183, 5529-5534 https://doi.org/10.1128/JB.183.19.5529-5534.2001