Rapid diagnosis of bovine tuberculosis in slaughter cattle using PCR

PCR 기법을 이용한 도축 소의 결핵병 신속진단

  • Koh, Ba-Ra-Da (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Kim, Hyun-Joong (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Park, Duk-Woong (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Park, Seong-Do (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Kim, Jae-Ik (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Park, Jong-Tae (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Kim, Yong-Hwan (Gwangju Metropolitan Health & Environment Research Institute)
  • 고바라다 (광주광역시 보건환경연구원) ;
  • 김현중 (광주광역시 보건환경연구원) ;
  • 박덕웅 (광주광역시 보건환경연구원) ;
  • 박성도 (광주광역시 보건환경연구원) ;
  • 김재익 (광주광역시 보건환경연구원) ;
  • 박종태 (광주광역시 보건환경연구원) ;
  • 김용환 (광주광역시 보건환경연구원)
  • Published : 2007.09.30

Abstract

Bovine tuberculosis is an important zoonosis worldwide. Mycobacterium bovis, the causative agent of this disease in cattle, is also a pathogen for humans and several economically important animals. The cases of tuberculosis are reported in two cow found at slaughter house located in Gwangju city. Histopathologically, in the lymph nodes, granulomas consisted of large areas of necrosis surrounded by variable thick bands of cellular infiltrate containing macrophages, Langhans-type multinucleated giant cells and lymphocytes. Lesions in the lung followed the same developmental pattern as did lesions in the lymph nodes with some exceptions. With the acid-fast staining, numerous mycobacteria were revealed in the lung and lymph nodes. M bovis was confirmed as a causative agent in these cattle using bacterial isolation and PCR and restriction fragment length polymorphism method based on a unique 12.7 kb fragment insertion sequence from the Mycobacterium tuberculosis genome and the pncA polymorphism, The insertion element IS6110 and IS1081 were present M bovis isolated from lungs and lymph nodes of cattle using PCR assay. These cases are interesting and important in public health aspect that M bovis-infected cattle were found during a routine post-mortem inspection at slaughter house.

Keywords

References

  1. Quinn PJ, Carter ME, Markey B, et al. 1994. Mycobacterium species. In Clinical Veterinary Microbiology. Mosby Wolfe, London : 156
  2. O'Reilly LM, Daborn CJ. 1995. The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis 76 (Suppl 1) : 1-46
  3. Cosivi O, Grange JM, Daborn CJ, et al. 1998. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4(1) : 59-70 https://doi.org/10.3201/eid0401.980108
  4. Cousins DV, Williams SN, Dawson DJ. 1999. Tuberculosis due to Mycobacterium bovis in the Australian population: DNA typing of isolates, 1970-1994. Int J Tuberc Lung Dis 3(8) : 722-731
  5. Cowan LS, Diem L, Monson T, et al. 2005. Evaluation of a two-step appro-ach for large-scale, prospective geno-typing of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol 43(2) : 688-695 https://doi.org/10.1128/JCM.43.2.688-695.2005
  6. Gibson AL, Hewinson G, Goodchild T, et al. 2004. Molecular epidemiology of disease due to Mycobacterium bovis in humans in the United Kingdom. J Clin Microbiol 42(1):431-434 https://doi.org/10.1128/JCM.42.1.431-434.2004
  7. Robert J, Boulahbal F, Trystram D, et al. 1999. A national survey of human Mycobacterium bovis infection in France. Network of Microbiology Laboratories in France. Int J Tuberc Lung Dis 3(8) : 711-714
  8. Ayele WY, Neill SD, Zinsstag J, et al. 2004. Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis 8(8) : 924-937
  9. Blazquez J, Espinosa de Los Monteros LE, Samper S, et al. 1997. Genetic characterization of multi-drug-resistant Mycobacterium bovis strains from a hospital outbreak involving human immunodeficiency viruspositive patients. J Clin Microbiol 35(6):1390-1393
  10. McIlroy SG, Neill SD, McCracken RM. 1986. Pulmonary lesions and Mycobacterium bovis excretion from the respiratory tract of tuberculin reacting cattle. Vet Rec 118(26) : 718-21 https://doi.org/10.1136/vr.118.26.718
  11. Fisanotti JC, Alito A, Big F, et al. 1998. Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for dignosis and epidemiology of tuberculosis. J Clin Microbiol 28 : 2051-2058
  12. Pierre C, Lecossier D, Boussougant Y, et al. 1991. Use of a reamplification protocol improves sensitivity of detection of Mycobacterium tuberculosis in clinical samples. J Clin Microbiol 29 : 712-717
  13. Thierry D, Cave MD, Eisenach KD, et al. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18 : 188
  14. Zumarraga MJ, Meikle V, Bernardelli A, et al. 2005. Use of touch-down polymerase chain reaction to enhance the sensitivity of Mycobacterium bovis detection. J Vet Diagn Invest 17(3) :232-238 https://doi.org/10.1177/104063870501700303
  15. 방혜은, 이혜영, 이진희, 등. 1998. 우결핵의 역학조사를 위한 Mycobacterium bovis의 분자생물학적 감별기법. 한국수의공중보건학회지. 22(2) : 123-130
  16. Cousins DV, Williams SN, Ross BC, et al. 1993. Use of a repetitive element isolated from Mycobacterium tuberculosis in hybridization studies with Mycobacterium bovis: a new tool for epidemiological studies of bovine tuberculosis. Vet Microbiol 37 : 1-17 https://doi.org/10.1016/0378-1135(93)90178-A
  17. Sreevatsan S, Pan X, Stockbauer KE, et al. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94(18) : 9869-9874
  18. Collins DM, Stephens DM. 1991. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol Lett 67(1) : 11-15
  19. van Soolingen D, Hermans PW, de Haas PE, et al. 1992. Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J Clin Microbiol 30(7) : 1772-1777
  20. Collins DM, Erasmuson SK, Stephens DM, et al. 1993. DNA fingerprinting of Mycobacterium bovis strains by restriction fragment analysis and hybridization with insertion elements IS1081 and IS6110. J Clin Microbiol 31(5) : 1143-1147
  21. Taylor GM, Worth DR, Palmer S, et al. 2007. Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR. BMC Vet Res 3:12 https://doi.org/10.1186/1746-6148-3-12
  22. Barouni AS, Augusto CJ, Lopes MTP, et al. 2004. A pncA polymorphism to differentiate between Mycobacterium bovis and Mycobacterium tuberculosis. Mol Cell Probes 18(3):167-170 https://doi.org/10.1016/j.mcp.2003.11.006
  23. Konno K, Feldmann FM, McDermott W. 1967. Pyrazinamide susceptibility and amidase acitivity of tubercle bacilli. Am Rev Respir Dis 95:461-469
  24. Morlock GP, Crawford JT, Butler WR, et al. 2000. Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44 : 2291-2295 https://doi.org/10.1128/AAC.44.9.2291-2295.2000
  25. Scorpio A and Zhang Y. 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drog pyrazinamide in tubercle bacillus. Nat Med 2 : 662-667 https://doi.org/10.1038/nm0696-662
  26. Zumarraga MJ, Big F, Alito A, et al. 1999. A 12.7-kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145 : 893-897 https://doi.org/10.1099/13500872-145-4-893
  27. Bakshi CS, Shah DH, Verma R, et al. 2005. Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR. Vet Microbiol 109:211-216 https://doi.org/10.1016/j.vetmic.2005.05.015
  28. Miller SA, Dykes DD, Polesky HF. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16 : 1215 https://doi.org/10.1093/nar/16.3.1215
  29. Hermans PW, van Soolingen D, Dale JW, et al. 1990. Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. J Clin Microbiol 28(9) : 2051-2058
  30. Collins GH, Grange JM. 1983. The bovine tubercle bacillus. J Appl Bacteriol 55 : 13-29 https://doi.org/10.1111/j.1365-2672.1983.tb02643.x
  31. Barry T, Glennon M, Smith T, et al. 1993. Detection of Mycobacterium bovis in bovine blood by combined PCR and DNA probe methods. Vet Rec 132(3) : 66-67 https://doi.org/10.1136/vr.132.3.66
  32. Bates J, Brennan P, Dougals WG, et al. 1986. Improvements in the diagnosis of tuberculosis. Am Rev Resp Dis 134 : 415-417
  33. Duffield BJ, Norton JH, Hoffman D. 1989. An analysis of recent isolations of Mycobacterium bovis and saprophytic mycobacteria from cattle in Northern Queensland. Aust Vet Res 103 : 420-425
  34. Rodriguez JG, Mejia GA, Del Portillo P, et al. 1995. Species-specific identification of Mycobacterium bovis by PCR. Microbiology 9 : 2131-2138
  35. Del Portillo P, Murillo LA, Patarroyo ME. 1991. Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29(10):2163-2168
  36. 김용환, Al-Haddawi MH, 조호성, 등. 2001. 소의 임상병리 가검물에서 Mycobacterium species 감별진단을 위한 multiplex PCR 기법. 대한수의학회지 41 : 535-542
  37. Shah DH, Verma R, Bakshi CS, et al. 2002. A multiplex-PCR for the differentiation of Mycobacterium bovis and Mycobacterium tuberculosis. FEMS Microbiol Lett 214(1):39-43 https://doi.org/10.1111/j.1574-6968.2002.tb11322.x
  38. Weil A, Plikaytis BB, Butler WR, et al. 1996. The mtp40 gene is not present in all strains of Mycobacterium tuberculosis. J Clin Microbiol 34: 2309-2311
  39. Davies AP, Billington OJ, McHugh TD, et al. 2000. Comparison of phenotypic and genotypic methods for pyrazinamide susceptibility testing with Mycobacterium tuberculosis. J Clin Microbiol 38 : 3686-3688
  40. Hewlett D Jr, Horn DL, Alfalla C. 1995. Drug-resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. JAMA 273 : 916-917 https://doi.org/10.1001/jama.273.12.916
  41. Piatek AS, Tyagi S, Pol AC, et al. 1998. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16 : 359-363 https://doi.org/10.1038/nbt0498-359
  42. Scorpio AD, Collins D, Whipple D, et al. 1997. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 35 : 106-110
  43. Espinosa de los Monteros LE, Galan JC, Gutierrez M, et al. 1998. Allelespecific PCR method based on pncA and oxyR sequences for distinguishing Mycobacterium bovis from Mycobac-terium tuberculosis: intraspecific M. bovis pncA sequence polymorphism. J Clin Microbiol 36 : 239-242
  44. Sreevatsan S, Pan X, Zhang Y, et al. 1997. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 41 : 636-640
  45. Niemann S, Richter E, Rusch-Gerdes S. 2000. Differentiation among members of the Mycobacterium tuberculosis complex by molecular and biochemical features: evidence for two pyrazinamide-susceptible subtypes of M bovis. J Clin Microbiol 38:152-157
  46. 김용환. 2002. 소의 임상가검물에서 Mycobacterium species 감별진단을 위한 multiplex PCR과 in situ hybridization의 활용. 전남대학교 박사학위논문. 36-55