Characterization of Acid-soluble Collagen from Alaska Pollock Surimi Processing By-products (Refiner Discharge)

  • Park, Chan-Ho (Division of Marine Life Science, Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Jae-Hyoung (Division of Marine Life Science, Institute of Marine Industry, Gyeongsang National University) ;
  • Kang, Kyung-Tae (Division of Marine Life Science, Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Jae-W. (Seafood Laboratory and Department of Food Science and Technology, Oregon State University) ;
  • Kim, Jin-Soo (Division of Marine Life Science, Institute of Marine Industry, Gyeongsang National University)
  • Published : 2007.08.31

Abstract

The study was carried out to examine on the refiner discharge from Alaska pollock as a collagen resource by characterizing biochemical and functional properties of collagen. The refiner discharge from Alaska pollock surimi manufacturing was a good resource for collagen extraction according to the results of total protein, heavy metal, volatile basic nitrogen, collagen content, amino acid composition, and thermal denaturation temperature (TDT). TDT of acid soluble collagen from refiner discharge showed $20.7^{\circ}C$, which was similar to that of collagen from Alaska pollock muscle and was higher than that of collagen from Alaska pollock skin. TDT of acid-soluble collagen from refiner discharge was, however, lower than those of skin collagens from warm fish and land animal. Acid-soluble collagen from refiner discharge of Alaska pollock could be used as a functional ingredient for food and industrial applications according to the results of water and oil absorption capacities, and emulsion properties. In addition, if the thermal stability of the acid-soluble collagens is improved, collagen from refiner discharge from Alaska pollock could be more effectively used.

Keywords

References

  1. Kim JS, Park JW. Characterization of acid-soluble collagen from Pacific whiting surimi processing by-products. J. Food Sci. 69: 637- 642 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09912.x
  2. Kim JS, Park JW. Partially purified collagen from refiner discharge of Pacific whiting surimi processing. J. Food Sci. 70: 511-516 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb11510.x
  3. Nagai T, Suzuki N. Preparation and characterization of several fish bone collagens. J. Food Biochem. 24: 427-436 (2000) https://doi.org/10.1111/j.1745-4514.2000.tb00711.x
  4. Cho SM, Gu YS, Kim SB. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloid 19: 221-229 (2005) https://doi.org/10.1016/j.foodhyd.2004.05.005
  5. Sarabia AI, Gomez-Guillen MC, Montero P. The effects of addedsalts on the viscoelastic properties of fish skin gelatin. Food Chem. 70: 71-76 (2000) https://doi.org/10.1016/S0308-8146(00)00073-X
  6. Leuenberger BH. Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocolloid 5: 353-361 (1991) https://doi.org/10.1016/S0268-005X(09)80047-7
  7. Park JW. Surimi and Surimi Seafood. 1st ed. Marcel Dekker, New York, NY, USA. pp. 127-165 (2000)
  8. Montero P, Borderias J, Turnay J, Leyzarbe MA. Characterization of hake (Merluccius merluccius L.) and trout (Salmo irideus Gibb) collagen. J. Agr. Food Chem. 38: 604-609 (1990) https://doi.org/10.1021/jf00093a004
  9. Ciarlo AS, Paredi ME, Fraga AN. Isolation of soluble collagen from hake skin (Merluccius hubbsi). J. Aquat. Food Prod. 6: 65-77 (1997)
  10. AOAC. Official Methods of Analysis. 16th ed. Method 69-74. Association of Official Analytical Chemists, Washington, DC, USA (1995)
  11. Bligh EG, Dyer WJ. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917 (1959) https://doi.org/10.1139/o59-099
  12. Conway EJ. Microdiffusion Analysis and Volumetric Error. 3rd ed. Crosby Lockwood and Son Ltd., London, England. pp. 152-153. (1950)
  13. KFDA (Korean Food and Drug Administration). Food Code. Moon- Yeoung Publishing Co., Seoul, Korea. pp. 70-72 (2006)
  14. Tsutagawa Y, Hosogai Y, Kawai H. Comparison of mineral and phosphorus contents of muscle and bone in the wild and cultured horse mackerel. J. Food Hyg. Soc. Japan 34: 315-318 (1994)
  15. Sato K, Yoshinaka R, Sato M, Ikeda S. A simplified method for determining collagen in fish muscle. Bull. Japan Soc. Sci. Fish. 52: 889-893 (1986) https://doi.org/10.2331/suisan.52.889
  16. Laemmli VK. Cleavage of structural proteins during the assembly of the heads of Bacteriopharge T4. Nature 227: 680-685 (1970) https://doi.org/10.1038/227680a0
  17. Kimura S, Tanaka H. Characterization of top shell muscle collagen comprising three identical $\alpha$1 chains. Bull. Japan Soc. Sci. Fish. 49: 229-232 (1983) https://doi.org/10.2331/suisan.49.229
  18. Zhu XP, Kimura S. Thermal stability and subunit composition of muscle and skin type I collagens from skipjack. Nippon Suisan Gakk. 57: 755-760 (1991) https://doi.org/10.2331/suisan.57.755
  19. Beuchat LR. Functional and electrophretic characteristics of succinylated peanut flour proteins. J. Agr. Food Chem. 46: 71-75 (1981)
  20. Wang JC, Kinsella JE. Functional properties of novel proteins: Alfalfa leaf protein. J. Food Sci. 41: 286-292 (1976) https://doi.org/10.1111/j.1365-2621.1976.tb00602.x
  21. Steel RGD, Torrie JH. Principle and Procedures of Statistics. 1st ed. McGraw-Hill Kogakusha, Tokyo, Japan. pp. 187-221 (1980)
  22. Kim JS, Kim IS, Heu MS, Kong CS, Lee TG, Yeum DM, Kang HG. The Principle and Application of Canned Foods. Hyoil Publishing Co., Seoul, Korea. pp. 205-212 (2002)
  23. Codex Code. European Community Comments for the Codex Committee on Food Additives and Contaminants-agenda Item 15(a) and 16(f), The Joint FAO/WHO Food Standards Programme. Food Standards Propramme, Rome, Italy (2004)
  24. Park YH, Chang DS, Kim SB. Seafood Processing and Its Utilization. Hyungsul Publishing Co., Seoul, Korea. pp. 106-113 (1995)
  25. Yamaguchi K, Lavety J, Love RM. The connective tissue of fish. 8. Comparative studies of hake, cod, and catfish collagens. J. Food Technol. 11: 389-399 (1976) https://doi.org/10.1111/j.1365-2621.1976.tb00737.x
  26. Sikorski ZE, Borderias J. Collagen in the muscles and skin of marine animals. pp. 58-70. In: Seafood Proteins. Sikorski ZE, Pan BS, Shahidi F (eds). Chapman & Hall, New York, NY, USA (1994)
  27. Bracho GE, Harrd NF. Determination of collagen crosslinks in rockfish skeletal muscle. J. Food Biochem. 14: 435-451 (1990) https://doi.org/10.1111/j.1745-4514.1990.tb00805.x
  28. Hwang JH, Miuta S, Yokoyama Y, Yoshinaka R. Purification and characterization of molecular species of collagen in the skin of skate (Raja kenojei). Food Chem. 100: 921-925 (2007) https://doi.org/10.1016/j.foodchem.2005.10.046
  29. Ando M, Ando M, Makino M, Tsukamasa Y, Makinodan Y, Miyoshi M. Interdepences between heat solubility and pyridinoline contents of squid mantle collagen. J. Food Sci. 66: 265-269 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb11329.x
  30. Muyonga JH, Cole CGB, Duodu KG. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem. 85: 81-89 (2004) https://doi.org/10.1016/j.foodchem.2003.06.006
  31. Kim JS, Cho SY. Screening for raw material of modified gelatin in marine animal skins caught in coastal offshore water in Korea. Agric. Chem. Biotechnol. 39: 134-139 (1996)
  32. Saito K, Kunisaki N, Urano N, Kimura S. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J. Food Sci. 67: 1319-1322 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb10281.x
  33. Kimura S, Ohno Y. Fish type I collagen tissue specific existence of 2 molecular forms, ($\alpha$1)2$\alpha$2 and ${\alpha}1{\alpha}2{\alpha}3$ in Alaska pollock. Comp. Biochem. Physiol. 88: 409-413 (1987) https://doi.org/10.1016/0305-0491(87)90320-8
  34. Yata M, Yoshida C, Fujisawa S, Mizuta S, Yoshinaka R. Identification and characterization of molecular species of collagen in fish skin. J. Food Sci. 66: 247-251 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb11325.x
  35. Hamada H. Effects of the preparation conditions on the physical properties shark skin gelatin gels. Nippon Suisan Gakk. 56: 671-677 (1990) https://doi.org/10.2331/suisan.56.671
  36. Miyauchi Y, Kimura S. Characterization of a ${\alpha}3$ chain from carp skin type I collagen. Nippon Suisan Gakk. 56: 1509-1514 (1990) https://doi.org/10.2331/suisan.56.1509
  37. Voigt MN, Botta IR. Advances in Fisheries Technology and Biotechnology for Increased Profitability. 1st ed. Technomic Publishing Co., Lancaster, PA, USA. pp. 325-333 (1990)
  38. Yim MH, Lee JH. Functional properties of fractionated soy protein isolate by protease from meju. J. Food Sci. Biotechnol. 9: 253-257 (2000)
  39. Sathe SK, Salunkhe DK. Functional properties of the Great northern bean (Phaseolus vulgaris L) proteins: emulsion, foaming, viscosity, and gelation properties. J. Food Sci. 46: 71-74 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb14533.x
  40. Sadowska M, Rudzki J. The chemical and functional properties of meat collagen. Lebnsm.-Wiss. Technol. 20: 171-173 (1987)
  41. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline protease. J. Agr. Food Chem. 48: 657-666 (2000) https://doi.org/10.1021/jf990447v
  42. Yang JS. Applications of gelatin in food and biotechnology. J. Food Sci. Nutr. 2: 263-268 (1997)
  43. Kim SK, Jeon YJ, Lee BJ, Lee CK. Purification and characterization of the gelatin from the bone of cod, Gadus macrocephalus. Korean J. Life Sci. 6: 14-26 (1996)