In Situ Detection and Differential Counts of Bifidobacterium spp. Using Bromocresol Green, a pH-dependent Indicator

  • Kim, Ki-Hwan (Department of Biological Resources and Technology, Yonsei University) ;
  • Shin, Won-Cheol (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Young-Seo (Division of Biotechnology, Kyungwon University) ;
  • Yoon, Sung-Sik (Institute of Functional Biomaterials and Biotechnology, Yonsei University)
  • Published : 2007.02.28

Abstract

The purpose of this study was to develop a simple detection method, possibly at the species-level, that allows for large-scale screening of bifidobacteria. Human fecal samples were plated on MRS-raffinose agar containing cysteine and neomycin sulfate, serving as selective pressure for bifidobacteria, and 0.003%(w/v) bromocresol green. All of the test strains grew well on this medium at $37{\pm}1^{\circ}C$, forming white colonies surrounded by yellow halos, which presented a sharp contrast against the green background. In this disc assay, the required incubation time to develop a yellowish zone varied with the species of Bifidobacterium that was tested, allowing for differential counts and easy identification at the species-level: 10-14 hr for B. bifidum, 20-22 hr for B. catenulatum and B. infantis. and 24-25 hr for B. longum and B. breve. No apparent color was observed for B. angulatum and B. adolescentis 28 hr after inoculation. To evaluate the results of pH indicator-based identification, individual isolates were subjected to a colony-PCR experiment with genus-specific primers. The amplified products from the isolates were in good accordance with those from the reference strains at a level of 95% agreement. These results suggest that the present method could be conveniently applied to cell counts, as well as to the preliminary identification of bifidobacteria from a variety of sample types including human feces, dairy products, and commercial probiotic supplements.

Keywords

References

  1. Hartemink R, Rombouts FM. Comparison of media for the detection of bifidobacteria, lactobacilli, and total anaerobes from fecal samples. J. Mircobiol. Meth. 36: 181-192 (1999) https://doi.org/10.1016/S0167-7012(99)00031-7
  2. Charteris WP, Kelly PM, Morelli L, Collins JK. Selective detection, enumeration, and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations. Int. J. Food Microbiol. 35: 1-27 (1997) https://doi.org/10.1016/S0168-1605(96)01222-6
  3. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1402 (1995)
  4. Requena T, Burton J, Matsuki T, Munro K, Simon MA, Tanaka R, Watanabe K, Tannock GW. Identification, detection, and enumeration of human Bifidobacterium species by PCR targeting the transaldolase gene. Appl. Environ. Microbiol. 68: 2420-2427 (2002) https://doi.org/10.1128/AEM.68.5.2420-2427.2002
  5. Resnick IG, Levin MA. Assessment of bifidobacteria as indicators of human fecal pollution. Appl. Environ. Microbiol. 42: 433-438 (1981)
  6. Pacher B, Kneifel W. Development of a culture medium for the detection and enumeration of bifidobacteria in fermented milk products. Int. Dairy J. 6: 43-64 (1996) https://doi.org/10.1016/0958-6946(94)00052-2
  7. Nebra Y, Blanch AR. A new selective medium for Bifidobacterium spp. Appl. Environ. Microbiol. 65: 5173-5176 (1999)
  8. Kaufmann P, Pfefferkorn A, Teuber M, Meile L. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl. Environ. Microbiol. 63: 1268-1273 (1997)
  9. Yamamoto T, Morotomi M, Tanaka R. Species-specific oligonucleotide probes for five Bifidobacterium species detected in human intestinal microflora. Appl. Environ. Microbiol. 58: 4076-4079 (1992)
  10. Langenijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, Welling GW. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61: 3069-3075 (1995)
  11. Kok RG, Waal AD, Schut F, Welling GW, Weenk G, Hellingwerf, KJ. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl. Environ. Microbiol. 62: 3668-3672 (1996)
  12. Matsuki T, Watanabe K, Tanaka R, Oyaizu H. Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted speciesand group-specific primers. FEMS Microbiol. Lett. 167: 113-121 (1998) https://doi.org/10.1111/j.1574-6968.1998.tb13216.x
  13. Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M. Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J. Bacteriol. 183: 2929-2936 (2001) https://doi.org/10.1128/JB.183.9.2929-2936.2001
  14. Mullie C, Odou M-F, Singer E, Romond M-B, Izard D. Multiplex PCR using 16S rRNA gene-targeted primers for the identification of bifidobacteria from human origin. FEMS Microbiol. Lett. 222: 129-136 (2003) https://doi.org/10.1016/S0378-1097(03)00245-3
  15. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. p.15. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA (1989)
  16. Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98: 211-217 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.05.011
  17. Nebra Y, Blanch AR. A new selective medium for Bifidobacteirum spp. Appl. Environ. Microbiol. 65: 5173-5176 (1999)
  18. Arroyo L, Cotton LN, Martin JH. Evaluation of media for enumeration of Bifidobacterium adolescentis, B. irfantis, and B. longum from pure culture. Cult. Dairy Prod. J. 29: 20-24 (1994)
  19. Shin MS, Lee JJ, Suh IY, Na SH, Baek YJ. Selective medium for the isolation and counting of bifidobacteria in dairy products. Korean J. Appl. Microbiol. Biotechnol. 22: 210-216 (1994)
  20. Ji, GE, Lee SK, Kim IH. Improved selective medium for isolation and enumeration of Bifidobacterium sp. Korean J. Food Sci. Technol. 26: 526-531 (1994)
  21. Song SH, Kim TB, Ju GE, Oh HI, Oh DK. High density cell culture of Bifidobacterium by optimization of medium composition and culture conditions. Korean J. Microbiol. Biotechnol. 30: 63-67 (2002)
  22. Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65: 4506-4512 (1999)
  23. Biavati B, Castagnoli P, Trovatelli LD. Species of the genus Bifidobacterium in the feces of human adults. Microbiologica 9: 39-45 (1986)
  24. Mangin I, Bourget N, Bouhnik Y, Bisetti N, Simonet J, Decaris B. Identification of Bifidobacterium strains by rRNA gene restriction patterns. Appl. Environ. Microbiol. 60: 1451-1458 (1994)