Antibacterial and Antimutagenic Effects of Sweetpotato Tips Extract

고구마 끝순 추출물의 항균 및 항돌연변이 효과

  • Published : 2007.09.30

Abstract

Sweetpotato shoot tops (leaves, tips and petioles) are known to be very useful parts as vegetables because of their high nutritive values and great biomass yield. In this study, the phenolic compound contents, antibacterial activity, mutagenic activity, and antimutagenic activity were investigated in sweetpotato tips that were 10-15cm of shoot top including stems, petioles and tender leaves after sprout of storage roots. The study was done by extracting sweetpotato tips with 80% ethanol and the ethanol fraction was re-extracted with hexane, chloroform, ethyl acetate, butanol and water. In ethyl acetate and butanol fractions, total phenolic compounds contained 95. 6mg/g extract and 69.3 mg/g extract, respectively, The antibacterial activity was measured using the paper disk method with concentrations of 1, 2, 5 and 10 mg/disk of butanol and ethyl acetate fractions against L. monocytogenes and S. Typhimurium strains. Higher doses of solvent extracts showed the higher antibacterial activities. In addition, 5, 10 and 20 mg/mL of the extracts were tested to determine the antibacterial activity in liquid culture. The sweetpotato leaf extract by ethyl acetate showed 1 log reduction compared to control after 24 hrs on Listeria monocytogenes, but 20 mg/ml of butanol extract completely inhibited the growth of the pathogen after 12 hrs. The extracts from ethyl acetate or butanol on Salmonella Typhimurium did less than 1 log reduction during cultivation compared to control. The numbers of S. Typhimirium TA98 and TA100 revertant colonies were 29-33 and 159-188 CFU/plate, respectively, indicating that solvent extracts were no mutagenic activity. The antimutagenic test was performed by adding direct mutagen 2-NF and MMS, and butanol and ethyl acetate showed antimutagenic effect. Thus, this study showed that sweetpotato tips had high phenolic contents and both antimicrobiol and antimutagenic properties. Sweetpotato tips would be good nutritive source because of their high nutrient content without any toxicity in consuming.

고구마 용도 다양화와 지상부의 채소적 가치를 구명키 위하여, 괴근에서 자라난 싹 중 부드러운 잎과 잎자루를 포함한 줄기끝 10 cm의 끝순을 수확하여, 끝순 추출물의 페놀화합물 함량, 식중독균인 Listeria monocytogenes, Salmonella Typhimurium에 대한 항균 활성, 식품안전성과 관련된 돌연변이원성 및 항돌연변이원성 등을 조사한 결과는 다음과 같다. 1. 고구마 끝순에는 6종의 페놀화합물이 함유되어 있었으며, 그 중 chlorogenic acid와 caffeic acid의 함량이 총페놀함량의 $89{\sim}93%$로 대부분을 차지하였다. 또한 용매분획별 페놀화합물 함량은 ethyl acetate 및 buthyl alcohol 추출물이 다른 용매추출물에 비하여 월등히 높았다. 2. 고구마 끝순의 80% ethanol 조추출물의 수율은 12.5 g이었고, 용매분획별로는 water 분획물이 8.9 g으로 가장 많았으며, 다음은 chloroform 분획물이 1.6 g이었고, 나머지 용매 분획물은 $0.7{\sim}1.1g$의 수율을 나타내었다. 3. 고구마 끝순에는 6종의 페놀화합물이 함유되어 있었으며, 그 중 chlorogenic acid와 caffeic acid의 함량이 총페놀 함량의 $89{\sim}93%$로 대부분을 차지하였다. 또한 용매분획별 페놀화합물 함량은 ethyl acetate 및 buthyl alcohol 추출물이 다른 용매추출물에 비하여 월등히 높았다. 4. Listeria monocytogenes에 ethyl acetate 및 buthyl alcohol 추출물을 첨가한 결과 16시간까지는 3 log 이상 균의 성장을 억제하였으며 특히 20 mg/ml butanol 추출물은 균의 성장을 억제시키다 12시간 이후에는 완전히 균을 사멸시키는 것으로 나타났다. Salmonella Typhimurium에 대해서도 고구마 끝순 추출물은 $0.5{\sim}1$ log 정도의 감소를 나타내었다. 5. 고구마 끝숱 추출물의 Salmonella Typhimurium TA98 및 TA100에 대한 돌연변이 활성을 조사한 결과 TA98은 $29{\sim}33$ CFU/plate이었고, TA100은 $159{\sim}188$ CFU/plate로 돌연변이 활성이 없었다. 6. 직접 돌연변이원 물질인 2-NF와 MMS를 처리하여 복귀돌연변이수를 측정한 결과 ethyl acetate 및 buthyl alcohol에서 돌연변이로 인한 복귀변이원성 집락수가 낮게 나타남으로써 고구마 끝순 추출물이 항돌연변이 활성이 있는 것으로 나타났다.

Keywords

References

  1. Aurea, M. A, B. Fatima, and J. Colette. 1997. Nutritional quality of sweet potato greens from greenhouse plants. J. Food Compo. Analy. 10 : 246-253 https://doi.org/10.1006/jfca.1997.0538
  2. Ames, B. N. and D. M. Maron. 1983. Revised methods for the salmonella mutagenicity test. Mutat. Res. 113 : 173-215 https://doi.org/10.1016/0165-1161(83)90010-9
  3. Ames, B. N., J. McCann, and E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with salmonella/mammalian microsome mutagenicity test. Mutat. Res. 31 : 347-364 https://doi.org/10.1016/0165-1161(75)90046-1
  4. FDA. 1995. Bacteriological Analytical Manual. Food and Drug Administration. Washington. D.C. 8
  5. Hagerman, A. E., K. M. Riedl, G. A. Jones, K. N. Sovik, N. T. Richard, P. W. Hartzfeld, and T. L. Riechel. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46 : 1887-1892 https://doi.org/10.1021/jf970975b
  6. Ha, M. H., W. P. Park, S. C. Lee, H. J. Heo, and S. H. Cho. 2007. Antimicrobial characteristic of methanolic extranolic extracts from prunus mune byproducts against food spoilage microorganisms. Korean J. Food Preserv. 14(2) : 183-187
  7. Islam, M. S., M. Yoshimoto, Y. Shoji, O. Shigenori, K. Ishiguro, and O. Yamakawa. 2002. Identification and characterization of foliar polyphenolic composition in sweetpotato (Impomea balalas L.) genotypes. J. Agric. Food Chem. 50 : 3718-3722 https://doi.org/10.1021/jf020120l
  8. Jung, D. S. and N. H. Lee. 2007. Antimicrobial activity of the aerial part (leaf and stem) extracts of cnidium officinale makino, a Korean medicinal herb. Korean J. Microbiol. Biotechnol. 35(1) : 30-35
  9. Kaul, A. and K. L. Khanduja. 1998. Polyphenols inhibit promotional phase of tumorigenesis: relevance of superoxide radicals. Nutr. Cancer. 32 : 81-85 https://doi.org/10.1080/01635589809514723
  10. Kim, Y. K. and Y. K. Kim. 1977. Free Redical Biology. Yeomungak. Seoul. pp. 359-363
  11. Kim, M. K., Y. S. Kim, S. I. Heo, T. H. Shin, J. H. Sa, and M. H. Wang. 2006. Studies for component analysis and antioxidant effect, antimicrobial activity in acanthopanax senticosus harms. Korean J. Pharmacogn. 37(3) : 151-156
  12. Lee, J. S., H. S. Kim, Y. S. Ahn, M. N. Chung, and J. M. Kim. 2004. Studied on Sweetpotato tips Cultivation Methods. Annual report. NICS. RDA
  13. Robard, K., P. D. Prernzler, G. Tucker, P. Swatsitang, and W. Glover. 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66 : 401-436 https://doi.org/10.1016/S0308-8146(99)00093-X
  14. Woolfe, J. A. 1992. Sweet potato. Cambridage University Press. New York pp. 92-93
  15. Yoshimoto, M., Y. Shoji, O. Shigenori, M. S. Islam, K. Ishiguro, and O. Yamakawa. 2002. Antimutagenicity of mono-, di- and tricaffeoylquinic acid derivatives isolated from sweetpotato (Impomea balalas L.) leaf. Biosci. Biotechnol. Biochem. 66(11) : 2336-2341 https://doi.org/10.1271/bbb.66.2336