Preparation of $PES-TiO_2$ Hybrid Membranes and Evaluation of Membrane Properties

$PES-TiO_2$ 복합막의 제조 및 막 특성 평가

  • Youm, Kyung-Ho (School of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Lee, Mi-Sheon (School of Chemical Engineering, College of Engineering, Chungbuk National University)
  • 염경호 (충북대학교 공과대학 화학공학부) ;
  • 이미선 (충북대학교 공과대학 화학공학부)
  • Published : 2007.09.30

Abstract

The polyethersulfone(PES)-titanium oxide($TiO_2$) hybrid membranes were prepared by immersion precipitation phase inversion method. The casting solution for the preparation of $PES-TiO_2$ hybrid membrane was provided by adding $TiO_2$ nano particles into the basis polymer solution of 14 wt% and 20 wt% PES/N-methyl-2-pyrrolidone(NMP). The $TiO_2$ loading [wt% ($TiO_2/NMP$)] in eating solution was varied from 0 to 60 wt%. Membrane performance and morphological change of the resulting $PES-TiO_2$ hybrid membranes were discussed in aspect of $TiO_2$ loading, by viscosity, coagulation value and light transmittance of the casting solution, measurement of tensile strength, pore size and contact angle, surface and cross sectional SEM images of the hybrid membrane, and ultrafiltration experiments using the hybrid membrane. According as increase of $TiO_2$ loading in the casting solution, viscosity is increased and coagulation value becomes lower, therefore the thermodynamic instability of the casting solution is increased. It is found that when $TiO_2$ loading is increased, 1) precipitation rate becomes faster while instantaneous demixing is maintained, 2) pure water flux, membrane pore size and compaction stability of the resulting membranes are increased, 3) tensile strength and contact angle are decreased. Dead-end ultrafiltration of bovine serum albumin(BSA) solution using the hybrid membrane shows that membrane performance(flux of BSA solution) enhanced up to 7 times compared with the results obtained using the pure PES membrane(not containing $TiO_2$ particle), due to the increase of hydrophilicity.

침지침강 상변환법으로 폴리에테르설폰$(PES)-TiO_2$ 복합막을 제조하였다. 14 wt% 및 20 wt%의 PES/NMP 기준 고분자 용액에 $TiO_2$ 나노입자를 PES에 대해 $0{\sim}60$ wt%로 첨가량을 달리하여 복합막 제조에 사용될 캐스팅 용액을 준비하였다. 제조된 $PES-TiO_2$ 복합막의 막 특성과 몰폴로지를 $TiO_2$ 첨가량에 따른 캐스팅 용액의 점도, coagulation value, 광투과도와 복합막의 인장강도, 세공크기 및 접촉각, 표면 및 단면 SEM 사진, BSA 용액의 한외여과 실험을 통해 규명하였다. 캐스팅 용액에 첨가시킨 $TiO_2$ 입자의 함유량이 증가함에 따라 점도는 증가하고 coagulation value는 낮아져 캐스팅 용액의 열역학적 불안정성이 증가하였다. $TiO_2$ 입자의 첨가량이 증가함에 따라 1) 순간분리의 침강형식을 유지하면서 침강속도가 빨라졌으며, 2) 순수투과량, 세공크기 및 압밀화 안정성이 증가하며, 3) 인장강도와 접촉각은 감소하였다. $PES-TiO_2$ 복합막의 BSA 용액에 대한 전량여과식 한외여과 실험결과 $TiO_2$ 입자의 함유량이 증가함에 따라 막의 친수화 특성이 증가하여 투과플럭스가 증가하였으며, $TiO_2$가 첨가되지 않은 막과 비교하여 최대 7배까지 투과 플럭스가 향상되었다.

Keywords

References

  1. S. Loeb and S. Sourirajan, UCLA Engineering Report No. 60, 60 (1960)
  2. D. R. Lloyd and T. B. Meluch, 'Material Science of Synthetic Membranes', Lloyd, D. R. Ed., ACS Symp. Ser. No. 269, Washington, DC, 47 (1985)
  3. H. Strathmann, 'Production of Microporous Media by Phase Inversion Processes', ACS Symp. Ser., 269, 165 (1985)
  4. H. Strathmann and K. Koch, 'The Formation Mechanism of Phase Inversion Membranes', Desalination, 21, 241 (1977) https://doi.org/10.1016/S0011-9164(00)88244-2
  5. H. Strathmann and K. Kock, 'The Formation Mechanism of Asymmetric Membranes', Desalination, 16, 179 (1975) https://doi.org/10.1016/S0011-9164(00)82092-5
  6. M. A. Kraus, M. Nemas, and M. A. Frommer, 'The Effect of Low Molecular Weight Additives on the Properties of Aromatic Polyamide Membranes', J. Appl. Poym. Sci., 23, 445 (1979) https://doi.org/10.1002/app.1979.070230214
  7. K. Darcovich and O. Kutowy, 'Surface Tension Consideration for Membrane Casting Systems', J. Appl. Polym. Sci., 35, 1769 (1988) https://doi.org/10.1002/app.1988.070350705
  8. M.-J. Kim, S.-D. Lee, and K.-H. Youm, 'Effect of Inorganic Salt Additives on Formation of Phase- Inversion Polyethersulfone Ultrafiltration Membrane', Membrane J., 12(2), 75 (2002)
  9. L. Y. Lafreniere and Frank D. F. Talbot, 'Effect of Polyvinylpyrrolidone Additive on the Perfrmance of Polyethersulfone Ultrafiltration Membranes', Ind. Eng, Chem, Res., 26, 2385 (1987) https://doi.org/10.1021/ie00071a035
  10. J.-Y. Lai, F.-C. Lin, C.-C. Wang, and D.-M. Wang, 'Effect of Nonsolvent Additives on the Porosity and Morphology of Asymmetric TPX Membranes', J. Memb. Sci., 118, 49 (1996) https://doi.org/10.1016/0376-7388(96)00084-1
  11. J.-H. Kim and K.-H. Lee, 'Effect of PEG Additive on Membrane Formation by Phase Inversion', J. Memb. Sci., 138, 153 (1998) https://doi.org/10.1016/S0376-7388(97)00224-X
  12. N. M. Wara, L. F. Francis, and B. V. Velamakanni, 'Addition of Alumina to Cellulose Acetate Membranes', J. Memb. Sci., 104, 43 (1995) https://doi.org/10.1016/0376-7388(95)00010-A
  13. W. Doyen, W. Adriansens, B. Moienberghs, and Leysen, R., 'A Comparison between Polysulfone, Zirconia and Organo-Mineral Membranes for Use in Ultrafiltration', J. Memb. Sci., 113, 247 (1996) https://doi.org/10.1016/0376-7388(95)00124-7
  14. I. Genne, S. Kuypers, and R. Leysen, 'Effect of the Addition of $ZrO_2$ to Polysulfone based UF Membranes', J. Memb. Sci., 113, 343 (1996) https://doi.org/10.1016/0376-7388(95)00132-8
  15. J. G. Wijmans, 'Hydrodynamic Resistance of Concentration Polarization Boundary Layers in Ultrafiltration', J. Memb. Sci., 22, 117 (1985) https://doi.org/10.1016/S0376-7388(00)80534-7
  16. W. Norde, F. MacRitchie, G. Nowicka, and J. Lyklena, 'Protein Adsorption at Solid-Liquid Interfaces : Reversibility and Conformation Aspects', J. Collid Interface Sci., 112, 447 (1986) https://doi.org/10.1016/0021-9797(86)90113-X
  17. K. H. Youm, A. G. Fane, and D. E. Wiley, 'Effects of Natural Convection Instability on Membrane Performance in Dead-end and Crossflow Ultrafiltration', J. Memb. Sci, 116, 229 (1996) https://doi.org/10.1016/0376-7388(96)00047-6
  18. C. Blicke, K. V. Peinemann, and S. P. Nunes, 'Ultrafiltration Membranes from Poly(ether sulfonamide)/ poly(ether imide) Blends', J. Memb. Sci, 79, 83 (1993) https://doi.org/10.1016/0376-7388(93)85019-S
  19. A. G. Fane, C. J. D. Fell, and K. J. Kim, 'The effect of Surfactant Pretreatment on the Ultrafiltration of Proteins', Desalination, 53, 37 (1985) https://doi.org/10.1016/0011-9164(85)85051-7
  20. A. Ziabicki, 'Fundamentals of Fiber Formation, The Science of Fiber Spinning and Drawing', Wiley, 197, pp. 300
  21. C. W. Yao, R. P. Burford, A. G. Fane, and J. D. Fell, 'Effect of Coagulation Condition on Structure and Properties of Membranes from Aliphatic Polyamides', J. Memb. Sci., 38, 113 (1988) https://doi.org/10.1016/S0376-7388(00)80874-1
  22. R. M. Boom, T. van den Boomgaard, and C. A. Smolder, 'Equilibrium Thermodynamics of a Quaternary Membrane-forming System with Two Polymers, 1. Calculation', Macromolecules, 27, 2041 (1994) https://doi.org/10.1021/ma00086a010
  23. A. J. Reuvers and C. A. Smolder, 'Formation of Membranes by Means of Immersion Precipitation, Part II. The Mechanism of Formation of Membranes Prepared from the System Cellulose Acetate- Acetone-Water', J. Memb. Sci., 34, 67 (1987) https://doi.org/10.1016/S0376-7388(00)80021-6
  24. M. Mulder, 'Basic Principles of Membrane Technology', Kluwer Academic Publishers, pp. 86-99 (1991)
  25. K. M. Persson, V. Gekas, and G. Tragadh, 'Study of Membrane Compaction and its Influence on Ultrafiltration Water Permeability', J. Memb. Sci., 100, 155 (1995) https://doi.org/10.1016/0376-7388(94)00263-X
  26. K. Ebert, D. Fritsch, J. Koll, and C. Tjahjawiguna, 'Influence of Inorganic Fillers on the Compaction Behaviour of Porous Polymer based Membranes', J. Memb. Sci. 233, 71 (2004) https://doi.org/10.1016/j.memsci.2003.12.012