Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea

경주시 봉길리 지역의 단열발달사 및 단열밀도 해석

  • Jin, Kwang-Min (Dept. of Environmental Geosciences, Pukyong National University) ;
  • Kim, Young-Seog (Dept. of Environmental Geosciences, Pukyong National University)
  • 진광민 (부경대학교 환경지질과학과) ;
  • 김영석 (부경대학교 환경지질과학과)
  • Published : 2007.09.30

Abstract

The study area, Bonggil-ri, Gyeongju, SE Korea, is composed of Cretaceous sedimentary rocks, and Tertiary igneous rocks and dykes. A research on fracture developing history and density distribution was carried out on well exposed Tertiary granites. The fractures developed in this area have the following sequence; NW-SE trending duo-tile shear bands (set a), NNW-SSE trending extensional fractures (set d), WNW-ESE trending extensional or normal fractures (set b), NE-SW trending right-lateral fractures (set c), WNW-ESE trending reverse fault reactivated from normal faults (set e) and NW-SE trending left-lateral faults reactivated from shear bands (set a) under brittle condition. According to the result of fracture density analysis, the fracture density in this area depends on rock property rather than rock age, and also higher fracture density is observed around fault damage zones. However, this high fracture density may also be related to the cooling process associated with dyke intrusion as well as rock types and fault movement. Regardless of the reason of the high fracture density, high fracture density itself contributes to fluid flow and migration of chemical elements.

연구지역인 경상북도 경주시 봉길리 지역은 백악기 퇴적암을 기반암으로 제3기의 화성암과 암맥들이 관입하여 분포한다. 이 지역에 대한 단열의 발달 특성을 이해하기 위하여 비교적 균질하고 신선한 제3기 화강암에 대한 격자분석을 통하여 단열발달사와 단열밀도 분포에 대한 연구를 실시하였다. 단열군들은 북서-남동방향의 연성 전단띠 (set a) ${\to}$ 북북서-남남동 방향의 인장단열 (set d) ${\to}$ 서북서-동남동 방향의 인장 또는 정단층성 단열 (set b) ${\to}$ 북동-남서 방향의 우수향 주향이동성 단열 (set c) ${\to}$ 서북서-동남동 방향의 정단층이 재활성된 역단층성 단열 (set e)의 순서로 발달되었음이 인지되었으며, 북서-남동방향의 연성 전단띠 (set a)는 이후에 좌수향으로 취성의 재활성 운동을 겪었음을 보여 준다. 서로 다른 암상에 대한 단열 밀도분석 결과는 단열의 밀도가 암석의 생성시기보다는 암석의 물성에 더 강하게 영향을 받는 것으로 나타났으며, 같은 암상에서의 단열밀도는 단층손상대에서 급격하게 증가함을 보여주었다. 또한 이러한 단열밀도의 변화는 암상의 차이와 관입접촉부를 따른 단층운동뿐만 아니라 암맥의 관입시의 냉각에 의한 절리의 형성에도 일부 원인이 있을 것으로 해석된다. 그러나 그 원인에 상관없이 이러한 단열의 증가는 유체의 유동에 좋은 통로의 역할을 하게 되어 이를 따른 유체의 유동뿐만 아니라 이에 포함된 원소의 이동에도 매우 중요한 기여를 할 것으로 생각된다.

Keywords

References

  1. 김동학, 황재하, 박기화, 송교영, 1998, 부산지질도폭설명서 (1:250,000), 한국자원연구원
  2. 박양대, 윤형대, 1968, 한국지질도(1:50,000), 울산도폭, 국립지질조사소, 5
  3. 손문, 정혜윤, 김인수, 2002. 한반도 남동부 연일구조선 남부 일원의 지질과 지질구조, 지질학회지, 38, 175- 197
  4. 이봉주, 류충렬, 최위찬, 1999, 경주시 양남면 일대의 제 4기 단층, 지질학회지, 35, 1-14
  5. 이현구, 문희수, 민경덕, 김인수, 윤혜수, Itaya, T., 1992, 포항 및 장기분지에 대한 고지자기, 층서 및 구조연구: 화산암류의 K-Ar 연대, 광산지질, 25, 337- 349
  6. 정창식, 2002, 해안단구에 대한 연대측정, 대한지질학회지, 38, 279-291
  7. 최범영, 류충렬, 권석기, 최위찬, 황재하, 이승렬, 이병주, 2002, 포항-울산 지역의 단층 구조 분석: 활구조 운동에 대한 접근, 대한지질학회지, 38, 33-50
  8. 한국자원연구원, 1998, 활성단층 조사평가 연구: 한반도 동남부 지역, 301
  9. Antonellini, M., Aydin, A., 1994, Effect of faulting on fluid flow in porous sandstones: Petrophysical properties, American Association of Petroleum Geologists Bulletin, 78, 355-377
  10. Barton, C. A., Zoback, M. D., Moos, D., 1995, Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683-686 https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2
  11. Bear, J., Tsang, C. -F., de Marsily, G., 1993, Flow and contaminant transport in fractured rock, Academic Press, San Diego, 560
  12. Caine, J.S., Forster, C.B., Evans, J.P., 1993, A classification scheme for permeability structures in fault zones, Eos (Transactions, American Geophysical Union), 74, 677
  13. Caine, J. S., Evans, J. P., Forster, C. B., 1996, Fault zone architecture and permeability structure, Geology, 24, 1025-1028 https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  14. Caine, J. S., Forster, C. B., 1997, Architecture and permeability strucuture of the Stillwater normal fault, Dixie Valley, Nevada (abstract), Ann. Meeting Geol. Soc. Am., Salt Lake City, Utah, 29, A-226
  15. Caine, J. S., Forster, C. B., 1999, Fault zone architecture and fluid flow: insights from field data and numerical modeling, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 101-127
  16. Cartwright, J. A., Lonergan, L., 1996, Volumetric contraction during compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems, Basin Research, 8, 183-193 https://doi.org/10.1046/j.1365-2117.1996.01536.x
  17. Choi, J. H., Murray, A. S., Jain, M., Cheon, G. C. S., Chang, H. W., 2003, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea, Quaternary Science Reviews, 22, 407-421 https://doi.org/10.1016/S0277-3791(02)00136-1
  18. Chough, S. K., Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea (Sea of Japan), Geology, 15, 45-48 https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  19. Cowie, P. A., Shipton, Z. K., 1998, Fault tip displacement gradients and process zone dimensions, Journal of Structural Geology, 20, 983-997 https://doi.org/10.1016/S0191-8141(98)00029-7
  20. Dholakia, S. K., Aydin, A., Pollard, D. D., Zoback, M. D., 1998, Fault-controlled hydrocarbon pathways in the Monterey formation, California, Bulletin of the American Association of Petroleum Geologists, 82, 1551-1574
  21. Dunne, W. M., Hancock, P. L., 1994, Paleostress Analysis of Small-Scale Brittle Structures. In Hancock, P.L. (Ed.), Continental Deformation. Pergarmon press, 101-120
  22. Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., Morris, A. P., 1999, Stressed Rock Strains Groundwater at Yucca Mountain, Nevada, The Geological Society of America Today, 9
  23. Fisher, Q. J., Knipe, R. J., 1998, Fault sealing processes in siliciclastic sediments. In: Jones, G., Fisher, Q. J., Knipe, R. J. (Eds.), Faulting, fault sealing and fluid flow in hydrocarbon reservoirs, 147, Geological Society Special Publication, 117-134
  24. Forster, C. B., Evans, J. P., 1991, Fluid flow in thrust faults and crystalline thrust sheets: Results of combined field and modeling studies, Geophysical Research Letters, 18, 979-982 https://doi.org/10.1029/91GL00950
  25. Forster, C.B., Goddard, J.V., Evans, J.P., 1994, Permeability structure of a thrust fault, in The mechanical involvement of fluids in faulting, U.S. Geological Survey Open-File Report 94-228, 216-223
  26. Goddard, J.V., Evans, J.P., 1995, Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A, Journal of Structural Geology, 17, 533-547 https://doi.org/10.1016/0191-8141(94)00068-B
  27. Gudmunsson, A., 2001, Fluid overpressure and flow in fault zone: field measurements and models, Tectonophysics, 336, 183-197 https://doi.org/10.1016/S0040-1951(01)00101-9
  28. Guilbert, J. M., Park, C. F., 1985, The Geology of Ore Deposits, W.H. Freeman, New York
  29. Hancock, P. L, 1985, Brittle microtectonics: principles and practice, Journal of Structural Geology, 7, 437- 458 https://doi.org/10.1016/0191-8141(85)90048-3
  30. Haneberg, W. C., 1995, Steady-state groundwater flow across idealized faults, Water Resources Research, 31, 1815-1820 https://doi.org/10.1029/95WR01178
  31. Inoue, D., Sasaki, T., Yanagida, M., Choi, W. H., Chang, C. J., 2002, Stratigraphy of the marine terrace along the East coast in Korea by means of the loess-paleosol sequence and Japanese tephra, The 55th Annual Meeting of the Geological Society of Korea, Abstr., 81
  32. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P., 2002, Flow behavior in a dual fracture network, Journal of Hydrology, 266, 99-119 https://doi.org/10.1016/S0022-1694(02)00120-8
  33. Kaneoka, I., Takigami, Y., Takaoka, N., Yamashita, S., Tamaki, K., 1992, $^{40}Ar-^{39}Ar$ analysis of volcanic rocks recovered from the Japan Sea floor: Constraints on the age of formation of the Japan Sea, Proceedings, Ocean Drilling Program, Scientific Results 127/128, 819-836
  34. Kim, J. H., 1996, Mesozoic tectonics in Korea, Journal of Southeast Asian Earth Sciences, 13, 251-265 https://doi.org/10.1016/0743-9547(96)00032-3
  35. Kim, Y. -S., Peacock D. C. P., Sanderson D. J., 2003, Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta, Journal of Structural Geology, 25, 793-812 https://doi.org/10.1016/S0191-8141(02)00200-6
  36. Kim, Y. -S., Park, J. Y., 2006, Cenozoic deformation history and its tectonic significance around Yangnam- Yangbuk area, SE Korea, Journal of Asian Earth Sciences, 26, 1-20 https://doi.org/10.1016/j.jseaes.2004.08.008
  37. Kim, Y. -S., Peacock, D. C. P., Sanderson, D. J., 2004a, Fault damage zones, Journal of Structural Geology, 26, 503-517 https://doi.org/10.1016/j.jsg.2003.08.002
  38. Kim, Y. -S., Park, J. Y., Kim, J. H., Shin, H. C., Sanderson, D. J., 2004b, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, SE Korea, The Island Arc, 13, 403- 415 https://doi.org/10.1111/j.1440-1738.2004.00435.x
  39. Kimura, G., Tamaki, K., 1986, Collision, rotation, and back-arc spreading in the region of the Okhotsk and Japan Seas, Tectonics, 5, 389-401 https://doi.org/10.1029/TC005i003p00389
  40. KOPEC, 2002, Preliminary Site Assessment Report for the New Site of Wolsung Power Plant (unpublished report), 2.5.-1-2.5.-281
  41. Leckenby, R. J., Sanderson, D. J., Lonergan, L., 2005, Estimating flow heterogeneity in natural fracture systems, Journal of Volcanology and Geothermal Research, 148, 116-129 https://doi.org/10.1016/j.jvolgeores.2005.03.017
  42. Lee, J. I., 2000, Provenance and thermal maturity of the lower Cretaceous Gyeongsang Supergroup, Korea, Unpublished Ph.D thesis, Seoul National University, 129
  43. Li, Y. G., Aki, K., Vidale, J. E., Alvarez, M. G., 1988, A delineation of the Nojima fault ruptured in the M7.2 Kobe, Japan, earthquake of 1995 using fault zone trapped waves, Journal of Geophysical Research, 103, 7247-7263 https://doi.org/10.1029/98JB00166
  44. Lopez, D. L., Smith, L., 1995, Fluid flow in fault zones: Analysis of the interplay of convective circulation and topographically driven groundwater flow, Water Resources Research, 31, 1489-1503 https://doi.org/10.1029/95WR00422
  45. Martel, S. J., Boger, W. A., 1998, Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock, Journal of Geophysical Research, 103, 21299-21314 https://doi.org/10.1029/98JB01393
  46. Matthai, S. K., Aydin, A., Pollard, D. D., Roberts, S. G., 1998, Numerical simulation of departures from radial drawdown in a faulted sandstone reservoir with joints and deformation bands, In: Jones, G., Fisher, Q. J., Knipe, R. J. (Eds.), Faulting, fault sealing and fluid flow in hydrocarbon reservoirs, Geological Society Special Publication, 157-191
  47. Micarelli, L., Benedicto, A., Wibberley, C. A. J., 2006a, Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, Journal of Structural Geology, 28, 1214-1227 https://doi.org/10.1016/j.jsg.2006.03.036
  48. Micarelli, L., Morettia, L., Jauberta, M., Moulouela, H., 2006b, Fracture analysis in the south-western Corinth rift (Greece) and implications on fault hydraulic behavior, Tectonophysics, 426, 31-59 https://doi.org/10.1016/j.tecto.2006.02.022
  49. Nelson, E. P., Kullman, A. J., Gardner, M. H., 1999, Fault-fracture networks and related fluid flow and sealing, Brushy Canyon formation, west Texas, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 69-81
  50. Newman, J., Mitra, G., 1994, Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennessee, Geological Society of America Bullentin, 106, 1267-1280 https://doi.org/10.1130/0016-7606(1994)106<1267:FIDARO>2.3.CO;2
  51. Randolph, L., Johnson, B., 1989, Influence of faults of moderate displacement on groundwater flow in the Hickory sandstone sandstone aquifer in central Texas, Geological Society of America Abstracts with Programs, 21, 242
  52. Peacock, D. C. P., Sanderson, D. J., 1991, Displacements, segment linkage and relay ramps in normal fault zones, Journal of Structural Geology, 13, 721- 733 https://doi.org/10.1016/0191-8141(91)90033-F
  53. Ree, J. -H., Lee, Y. -J., Rhodes, E. J., Park, Y., Kwon, S. -T., Chwae, U., Jeon, J. -S., Lee, B., 2003, Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula: age constraint by optically stimulated luminescence dating, The Island Arc, 12, 1- 12 https://doi.org/10.1046/j.1440-1738.2003.00372.x
  54. Sanderson, D. J., Zhang, X., 1999, Critical stress localization of flow associated with deformation of wellfractured rock masses, with implications for mineral deposits, In: McCaffrey, K.J.W., Lonegan, L., Wilkinson, J.J. (Eds.), Fracture, Fluid Flow and Mineralisation, Special Publication, 155. Geological Society of London, 69-81
  55. Scholz, C.H., 1990, The mechanics of earthquakes and faulting, Cambridge, Cambridge University Press, 439
  56. Sibson, R. H., Robert, F., Poulsen, K. H., 1988, High-angle reverse faults, fluid pressure cycling, and mesothermal quartz-gold deposits, Geology, 16, 551- 555 https://doi.org/10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
  57. Sibson, R. H., 1989, Earthquake faulting as a structural process, Journal of Structural Geology, 11, 1-14 https://doi.org/10.1016/0191-8141(89)90032-1
  58. Sigda, J. M., Goodwin, L. B., Mozley, P. S., Wilson, J. L., 1999, Permeability Alteration in Small-Displacement Faults in Poorly Lithified Sediments: Rio Grande Rift, Central New Mexico, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 51-68
  59. Smith, L., Forster, C.B., Evans, J.P., 1990, Interaction of fault zones, fluid flow, and heat transfer at the basin scale, inHydrogeology of permeability environments, International Association of Hydrogeologists, 2, 41-67
  60. Tamaki, K., 1988, Geological structure of the Japan Sea and its tectonic implications, Bulletin of the Geological Survey of Japan, 39, 269-365
  61. Tateiwa, I., 1924, Geological Atlas of Chosen, No. 2. Ennichi, Kyuryuho and Choyo sheets, Geological Survey, Governmental General of Chosen, 6
  62. Wibberley, C. A. J., 2002, Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip, Earth, Planets and Space, 54, 1153-1171 https://doi.org/10.1186/BF03353317
  63. Yoon, S. H., Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), Geological Society of America Bulletin, 107, 83-97 https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  64. Zhang, X., Sanderson, D. J., 1995, Anisotropic features of geometry and permeability in fractured rock masses. Engineering Geology, 40, 65-75 https://doi.org/10.1016/0013-7952(95)00040-2
  65. Zhang, X., Sanderson, D. J., 1996a, Effects of stress on the two-dimensional permeability tensor of natural fracture networks, Geophysical Journal International, 125, 912-924 https://doi.org/10.1111/j.1365-246X.1996.tb06034.x
  66. Zhang, X., Sanderson, D. J., 1996b, Numerical modelling of the effects of fault slip on fluid flow around extensional faults, Journal of Structural Geology, 18, 109- 119 https://doi.org/10.1016/0191-8141(95)00086-S
  67. Zhang, X., Sanderson, D. J., 1998, Numerical study of critical behavior of deformation and permeability of fractured rock masses, Marine and Petroleum Geology, 15, 535-548 https://doi.org/10.1016/S0264-8172(98)00030-0