Biodiesel: Oil-crops and Biotechnology

바이오디젤 원료 작물 품종 개량과 생명공학기술 응용

  • Roh, Kyung-Hee (Plant Metabolic Engineering Lab, National Institute of Agricultural Biotechnology) ;
  • Park, Jong-Sug (Plant Metabolic Engineering Lab, National Institute of Agricultural Biotechnology)
  • 노경희 (농업생명공학연구원 분자생리과 대사물질연구실) ;
  • 박종석 (농업생명공학연구원 분자생리과 대사물질연구실)
  • Published : 2007.09.30

Abstract

The substitution of fossil fuels with biofuels has been proposed by the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support the development of rural communities. Vegetable oils and their derivatives (especially methyl esters), commonly referred to as 'biodiesel', are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to the initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. However, several problems remain including economics, combustions, some emissions, lube oil contamination, and low-temperature properties. Therefore, quality control of fuel-related properties of biodiesel is needed to obtain consistent engine performance by fuel users. The quality of the fuel is affected by the oil composition. Rapeseed oil has been targeted for fuel use because it produces an oil with a close-to-optimum set of fuel characteristics. In this paper we have reviewed past and current efforts, both by traditional seed-breeding methods and by genetic engineering, to modify rapeseed oil quality and yield.

지구 온난화의 주 원인인 온실가스의 배출을 감소시키기 위해서 바이오연료에 대한 필요성 및 중요성이 제기되어 왔다. 이미 유럽을 중심으로 오래전부터 바이오디젤 연료에 대한 연구가 시작되어 왔으며 지금은 상용화 단계에 접어들고 있는 반면, 국내 바이오디젤 연료에 대한 연구 수준은 이제 시작단계에 불과한 실정이다. 바이오디젤 연료로 사용가능한 유지작물의 지방산 조성에 따라 자동차 엔진 성능이 저하될 수 있다는 문제가 제기되었고, 이를 해결하고자 표준화된 바이오디젤 품질 규격서가 마련되어졌다. 유럽에서 마련된 바이오디젤 규격에 의하면 올레인산 함량이 높은 기름이 바이오디젤 연료로 적합하며, 유채기름이 다른 유지작물의 기름에 비하여 바이오디젤 연료에 적합하다고 알려져 있다. 따라서 국내 유지작물의 바이오디젤 연료화를 위한 품질 개량과 생산량 증대를 위해 생명공학기술을 이용한 품종 개량에 관한 연구 전략에 대해 고찰하였다.

Keywords

References

  1. Frondel, M. and Peters, J. (2007) Biodiesel: A new Oildorado? Energy Policy 35, 1675-1684 https://doi.org/10.1016/j.enpol.2006.04.022
  2. Nitske, W. R. and Wilson, C. M. (1965) In Rudolph Diesel, pioneer of the age of power, University of Oklahoma Press, Norman, Oklahoma
  3. Gurr, M. I., Harwood, J. L. and Frayn, K. N. (2002) In Lipid Biochemistry (5th ed.), pp. 13-101. Blackwell Science Ltd, Oxford, UK
  4. Rozenaal, A. (1992) Interesterification of fats. Inform 3, 1232-1237
  5. Allen, J. C. (1955) Determination of unsaturation. Journal of American Oil and Chemists' Society 32, 671- 674 https://doi.org/10.1007/BF02637564
  6. Frankel, E. N. (1998) In Lipid Oxidation, The Oily Press Ltd, Dundee, Scotland
  7. Erickson, D. R. and List, G. R. (1985) Fat degradation reactions. In Bailey's Industrial Oil and Fat Products, (3rd ed.) John Wiley & Sons, Inc., Toronto, Canada, pp. 275-277
  8. Gray, J. I. (1978) Measurement of lipid oxidation: a review. Journal of American Oil and Chemist's Society, 55, 539-546 https://doi.org/10.1007/BF02668066
  9. Formo, M. W. (1979) Physical properties of fats and fatty acids. In Bailey's Industrial Oil and Fats, John Wiley & Sons, Inc., Toronto, Canada, pp. 177-232
  10. Nourredini, H., Teoh, B. C. and Clements, L. D. (1992b) Viscositites of vegetable oils and fatty acids. Journal of American Oil and Chemists' Society, 69, 1189-1191 https://doi.org/10.1007/BF02637678
  11. Prankl, H. and Wrgetter, M. (1995) Standardisation of biodiesel on a European level. Proceedings 3rd European Motor Biofuels Forum, Brussels, Belgium
  12. Bengtsson, L., Von Hoften, A. and LooF, B. (1972) Botany of rapeseed. In: Rapeseed Cultivation, Composition, Processing and Utilization. pp. 36-48. Elsevier Publishing Company. London
  13. Saurer, F. D. and Kramer, J. K. G. (1983) The problems associated with the feeding of high erucic acid rapeseed oils and some fish oils to experimental animals. In: High and Low Erucic Acid Rapeseed Oils Production, Usage, Chemistry, and Toxicological Evaluation. pp. 254- 292. Academic Press, Toronto
  14. Daun, J. K. and Adolphe, D. F. (1997) A revision to the canola definition. Bulletin of GCIRC, 14, 134-141
  15. Daun, J. K. (1984) Composition and use of canola seed, oil and meal. Cereal Foods World, 29, 291-296
  16. Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C. and Kim, S. T. (2002) Yield performance and local adaptability of rapeseed F1 hybrids. Korean J. Breed. 34, 41-45
  17. Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C. and Park, J. H. (2002) Method of seed production of F1 hybrids in Brasscia napus L. Korean J. Breed. 34, 158-162
  18. Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C., Bang, J. K., Kwon, B. S. and Lee, J. I. (2002) Development of maintainer and Mokpo-CGMS in Oilseed rape (Brasscia napus L.) Korean J. Breed. 34, 163-167
  19. Jang, Y. S., Choi, I. H., Oh, Y. B., Cho, S. Y., Chong, D. H. and Oh, H. J. (1998) A new early-maturing, flower of large size and the use of sightseeing rapeseed variety 'Tammiyuchae'. J. Indus. Crop Sci. 40, 67-70
  20. Auld, D., Heikkinen, M. K., Erickson, D. A., Sernyk, L. and Romero, E. (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acid levels and increased levels of oleic acid. Crop Sci. 32, 657-662 https://doi.org/10.2135/cropsci1992.0011183X003200030016x
  21. Rcker, B. and Rbbelen, G. (1995) Development of high oleic acid rapeseed. In: Rapeseed Today and Tomorrow. Proceedings of 9th International Rapeseed Congress, Vol. 2, pp. 389-391, Cambridge, UK
  22. DeBonte, L. R. and Hitz, W. D. (1998) Canola oil having increased oleic acid and decreased linolenic acid content. US Patent No. 5850026
  23. Stoutjesdijk, P. A., Hurlstone, C., Singh, S. P. and Green, A. G. (1999) Genetic manipulation for altered oil quality in Brassica. In New Horizons for an Old Crop. Proceedings of 10th International Rapeseed Congress, pp. 26-29, Wratten, N. and Salisbury, P. A., Canberra. Australia
  24. Rakow, G. and Raney, P. (2001) Low saturated fat Brassica napus. GCIRC Technical Meeting, B18, Poznan, Poland
  25. Knutzon, D. S., Thompson, G. A., Radke, S. E., Johhson, W. B., Knauf, V. C. and Kridl, J. C. (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA. 89, 2624-2628
  26. Hildebrand, D. F. and Grayburn, S. W. (1999) Fatty acid alteration by a 9 desaturase in transgenic plant tissue. US Patent No. 5,866,789
  27. Rakow, G., Relf-Eckstein, J., Raney, J. P. and Gugel, R. (1999) Development of high yielding disease resistant, yellow-seeded Brassica napus. In: New Horizons for an Old Crop. Proceedings of 10th International Rapeseed Congress, Canberra, Australia
  28. Park, J. S., Choung, M. G., Kim, J. B., Kim, J. B., Bae, S. C., Roh, K. H., Kim, Y. H., Cheon, C. I., Sung, M. K., and Cho, K. J. (2007) Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep. 26, 507-517 https://doi.org/10.1007/s00299-006-0255-x
  29. Iba, K. (2002) Acclimative response to temperature stress in higher plant: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225-245 https://doi.org/10.1146/annurev.arplant.53.100201.160729
  30. Griffith, M. and Yaish, M. W. F. (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science 9, 399-405 https://doi.org/10.1016/j.tplants.2004.06.007
  31. Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 90, 1629-1633
  32. Sen Gupta, A., Webb, R. P., Holaday, A. S. and Allen, R. D. (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103, 1067-1073 https://doi.org/10.1104/pp.103.4.1067
  33. McKersie, B. D., Bowely, S. R. and Jones, K. S. (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 119, 839-847 https://doi.org/10.1104/pp.119.3.839
  34. McKersie, B. D., Murnaghan, J., Jones, K. S. and Bowely, S. R. (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 122, 1427-1437 https://doi.org/10.1104/pp.122.4.1427
  35. Roxas, V. P., Smith, R. K. Jr., Allen, E. R., and Allen R. D. (1997) Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15, 988- 991 https://doi.org/10.1038/nbt1097-988
  36. Kishitani, S., Takanami, T., Suzuki, M., Oikawa, M., and Yokoi, S. (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ. 23, 107-114 https://doi.org/10.1046/j.1365-3040.2000.00527.x
  37. Moon, B. Y., Higashi, S., Gombos, Z. and Murata, N. (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA. 92, 6219- 6223
  38. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H. and Tasaka, Y. (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356, 710-713 https://doi.org/10.1038/356710a0
  39. Yokoi, S., Higashi, S., Kishitani, S., Murata, N. and Toriyama, K. (1998) Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase(GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol. Breed. 4, 269-275 https://doi.org/10.1023/A:1009671231614
  40. Wolter, F. P., Schmidt, R. and Heinz, E. (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11, 4685-4692
  41. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast .-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601-605 https://doi.org/10.1104/pp.105.2.601
  42. Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M. and Iba, K. (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol. 107, 1177-1185 https://doi.org/10.1104/pp.107.4.1177
  43. Murakami, Y., Tsuyama, M., Kobyayshi, Y., Kodama, H. and Iba, K. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 28, 476-479
  44. Hamada, T., Kodama, H., Takeshita, K., Utsumi, H. and Iba, K. (1998) Characterization of transgenic tobacco with an increased .-linolenic acid level. Plant Physiol. 118, 591-598 https://doi.org/10.1104/pp.118.2.591
  45. Shimada, T., Wakita, Y., Otani, M. and Iba, K. (2000) Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal .-3 fatty acid desaturase gene (NtFAD3). Plant Biotechnol. 17, 43-48
  46. Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K. and Murata, N. (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14, 1003- 1006 https://doi.org/10.1038/nbt0896-1003
  47. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106 https://doi.org/10.1126/science.280.5360.104
  48. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291 https://doi.org/10.1038/7036
  49. Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, D-. M., and Lee, S. I. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247-259 https://doi.org/10.1046/j.1365-313x.2001.00947.x
  50. Tamminen, I., Mkel, P., Heino, P., and Palva, E. T. (2001) Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J. 25, 1-8 https://doi.org/10.1046/j.1365-313x.2001.00927.x
  51. Worrall, D., Elias, L., Ashford, D., Smallwood, M. Sidebottom, C. Lillford, P. Telford, J. Holt, C. and Bowles, D. (1998) A carrot leucine-rich repeat protein that inhibits ice recrystallization. Science 282, 115-117 https://doi.org/10.1126/science.282.5386.115
  52. Meyer, K., Keil, M. and Naldreff, M. J. (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett. 447, 171-178 https://doi.org/10.1016/S0014-5793(99)00280-X
  53. Fan, Y., Liu, B., Wang, H., Wang, S. and Wang, J. (2002) Cloning of antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants. Plant Cell Rep. 21, 296-301 https://doi.org/10.1007/s00299-002-0495-3