Effect of KwyBiChongMung-Tang Hot Water Extract & Ultra-fine Powder on the Alzheimer's Disease Model

귀비총명탕 열수추출물과 초미세분말제형이 Alzheimer's Disease 병태 모델에 미치는 영향

  • Lee, Seung-Hee (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Lee, Sang-Ryong (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Jung, In-Chul (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University)
  • 이승희 (대전대학교 한의과대학 신경정신과학교실) ;
  • 이상룡 (대전대학교 한의과대학 신경정신과학교실) ;
  • 정인철 (대전대학교 한의과대학 신경정신과학교실)
  • Published : 2007.08.25

Abstract

This experiment was designed to investigate the effects of the KBCMT hot water extract & ultra-fine powder on Alzheimer's Disease Model Induced by ${\beta}A$. The effects of the KBCMT hot water extract on expression of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, NOS-II, COX-2 mRNA and production of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, NO in BV2 microglial cell line treated by lipopolysacchaide(LPS). The effects of the KBCMT hot water extract & ultra-fine powder on (1) the behavior (2) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, CD68 and CD11b; (3) AChE in serum (4) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. The KBCMT hot water extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in BV2 microglia cell line treated with LPS. The KBCMT hot water extract suppressed the production of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, NO in BV2 microglial cell line treated with LPS. The KBCMT hot water extract & ultra-fine powder a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency and distance movemet-through latency The KBCMT ultra-fine powder suppressed the expression of TNF-a protein significantly in the microglial cell of mice with Alzheimer's disease induced by ${\beta}A$. The KBCMT hot water extract & ultra-fine powder reduced the MDA and suppressed the over-expression of CD68, CD11b in the mice with Alzheimer's disease induced by ${\beta}A$. The KBCMT hot water extract & ultra-fine powder decreased AChE significantly in the serum of the mice with Alzheimer's disease induced by ${\beta}A$. The KBCMT hot water extract & ultra-fine powder reduced infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. The KBCMT hot water extract & ultra-fine powder reduced the tau protein, GFAP, and presenilin1, 2 of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. These results suggest that the KBCMT hot water extract & ultra-fine powder may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the KBCMT hot water extract & ultra-fine powder for Alzheimer's disease is suggested for future research.

Keywords

References

  1. 배영철 외. 노인의학. 서울, 고려의학, pp 193-209, 1996
  2. 이근후 외. 최신임상정신의학. 서울, 하나의학사, pp 138, 216-228, 1988
  3. Bierer, L.M., Haroutunian, V., Gabriel, S., Knott, P.J., Carlin, L.S., Purohit, D.P., Perl, D., Dchmeridler, J., Kanof, P. and Davis, K.L. Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. Journal of Neurochemistry 64: 749-760, 1995 https://doi.org/10.1046/j.1471-4159.1995.64020749.x
  4. 張介賓. 張氏景岳全書. 서울, 翰成社, pp 610-611, 1978
  5. 陳士鐸. 石室秘錄. 北京, 中國中醫藥出版社, p 125, 1991
  6. 대한한방신경정신과학회. 한방신경정신과학. 서울, 집문당, pp 311-320, 451, 2005
  7. 許浚. 東醫寶鑑. 서울, 大星文化社, pp 55-56, 98 , 1996
  8. 李尙仁 외. 漢藥臨床應用. 서울, 成輔社, pp 151-153, 308-313, 419-420, 426-428, 1990
  9. 嚴用和. 濟生方. 북경, 인민위생출판사, p 117, 1980
  10. 박지운, 정인철, 이상룡. 聰明湯과 木槿皮聰明湯이 CT105와 $\beta$A로 유도된 Alzheimer's Disease病態 모델에 미치는 영향. 동의신경정신과학회지 17(1):37-57, 2006
  11. 최강욱, 이상룡, 정인철. 聰明湯과 木槿皮聰明湯 열수추출물, 초미세분말제형이 microglia 및 기억력 감퇴 병태모델에 미치는 영향. 동의생리병리학회지 20(5):1200-1210, 2006
  12. 김인재 외. 加味歸脾聰明湯이 老化 白鼠의 血液.血淸變化와 血淸과 腦組織의 抗酸化活性에 미치는 影響. 동의신경정신과학회지 9(2):53-69, 1998
  13. 최현정, 방나영, 송보완, 김남재, 류봉하. 한약제형 선호도에 관한 설문조사. 경희의학, 20(1):356-367, 2004
  14. Song, L.L., Du, G.J., Zhang, D.L. Study on pharmacology of ultra-fine particles compound Rehmannia. Zhongguo Zhong Yao Za Zhi, 27(6):436-439, 2002
  15. Skehan, P., Storeng, R., Scudiero, D., Monk, A., McMahon, J., Visca, D., Warren, J.T., Kennedy, S., Boyd, M.R. New colorimetric cytotoxicity assay for anticancer drug screening. Journal of the National Cancer Institute 82(13):1107-1112, 1990 https://doi.org/10.1093/jnci/82.13.1107
  16. Abu-Absi, N.R., Zamamiri, A., Kacmar, J., $\beta$Alogh, S.J., Srienc, F. Automated flow cytometry for acquisition of time-dependent population data. Cytometry 51A(2):87-96, 2003 https://doi.org/10.1002/cyto.a.10016
  17. Michael, L.H., Entman, M.L., Hartley, C.J., Youker, K.A., Zhu, J., Hall, S.R., Hawkins, H.K., Berens, K., $\beta$Allantyne, C.M. Myocardial ischemia and reperfusion ; a murine model. Am J Physiol, 269: 2147-2154, 1995
  18. Li, W.Y., Butler, J.P., Hale, J.E., McClure, D.B., Little, S.P., Czilli, D.L., Simmons, L.K. Suppression of an amyloid beta peptide-mediated calcium channel response by a secreted beta-amyloid precursor protein. Neuroscience 95(1):1-4, 2000 https://doi.org/10.1016/S0306-4522(99)00479-0
  19. Miyazaki, H., Murayama, T., Ono, S., Narita, H., Nomura, Y. Effects of R(-)-1-(benzo[b]thiophen-5-yl)-2-[2-N, N-diethyl-amino) ethoxy] ethanol hydrochloride(T-588), a novel cognitive enhancer, on noradrenaline release in rat cerebral cortical slices. Biochem Pharmacol 53(9):1263-1269, 1997 https://doi.org/10.1016/S0006-2952(97)00020-8
  20. Mattson, M.P., Guo, Z.H., Geiger, J.D. Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem, 73(2):532-537, 1999 https://doi.org/10.1046/j.1471-4159.1999.0730532.x
  21. Li, W.Y., Butler, J.P., Hale, J.E., McClure, D.B., Little, S.P., Czilli, D.L., Simmons, L.K. Suppression of an amyloid beta peptide-mediated calcium channel response by a secreted beta-amyloid precursor protein. Neuroscience 95(1):1-4, 2000 https://doi.org/10.1016/S0306-4522(99)00479-0
  22. Trabace, L., Cassano, T., Steardo, L., Pietra, C., Villetti, G., Kendrick, K.M., Cuomo, V. Biochemical and neurobehavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J Pharmacol Exp Ther 294(1):187-194, 2000
  23. Pyo, H., Joe, E., Jung, S., Lee, S.H., Jou, I. Gangliosides activate cultured rat brain microglia. J Biol Chem, 274(49):34584-34589, 1999 https://doi.org/10.1074/jbc.274.49.34584
  24. Downen, M., Amaral, T.D., Hua, L.L., Zhao, M.L., Lee, S.C. Neuronal death in cytokine-activated primary human brain cell culture ; role of tumor necrosis factor-alpha. Glia, 28(2):114-127, 1999 https://doi.org/10.1002/(SICI)1098-1136(199911)28:2<114::AID-GLIA3>3.0.CO;2-O
  25. Simmons, M.L., Murphy, S. Induction of nitric oxide synthase in glial cells. J Neurochem 59(3):897-905, 1992 https://doi.org/10.1111/j.1471-4159.1992.tb08328.x
  26. Stephen, L.Y., Loyd, H.B., June, K.A., Joyce, M.A., Michael, D.D., Paula, B.E., Anthony, M.P., Piorkowski, Kurt, R.B. Amyloid $\beta$ and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74(3):1017-1025, 2000 https://doi.org/10.1046/j.1471-4159.2000.0741017.x
  27. Fukuyama, R., Izumoto, T., Fushiki, S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer's disease patients and correlates with severity of dementia. Eur Neurol 46(1):35-38, 2001 https://doi.org/10.1159/000050753
  28. 洪元植. 精校黃帝內經素問. 서울, 東洋醫學硏究院, pp 37, 124, 196, 229, 217-218, 229, 1985
  29. Chew, N.Y., Tang, P., Chan, H.K., Raper, J.A. Related Articles, Links : How much particle surface corrugation is sufficient to improve aerosol performance of powders. Pharm Res Jan 22(1):148-152, 2005 https://doi.org/10.1007/s11095-004-9020-4
  30. Fung, D., Ng, G. Effects of herbal application on the ultrastructural morphology of repairing medial collateral ligament in a rat model. Connect Tissue Res 45(2):122-130, 2004 https://doi.org/10.1080/03008200490442662
  31. Lee, S.C., Liu, W., Dickson, D.W., Brosnan, C.F., Berman, J.W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. The Journal of Immunology 150(7):2659-2667, 1993
  32. Nick, J.A., Avdi, N.J., Gerwins, P., Johnson, G.L., Worthen, G.S. Activation of p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol 156(12):4867-4875, 1996
  33. Marcheselli, V.L., Bazan, N.G. Sustained induction of prostaglandin endoperoxide-2 by seizure in hippocampus. The Journal of biological chemistry 271: 24794-24799, 1997
  34. Yen, G.C., Lai, H.H. et al. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root, Food Chemistry 74: 471-478, 2001 https://doi.org/10.1016/S0308-8146(01)00165-0
  35. Yamazaki, M., Matsuoka, N., Kuratani, K., Ohkubo, Y., Yamaguchi, I. FR121196, a potential antidementia drug, ameliorates the impaired memory of rat in the Morris water maze. J Phamacol Exp Ther 272(1):256-263, 1995
  36. Nakaya, H., Tohse, N. & Nanno, M. Electrophysiological derngements induced by lipid peroxidation in cardiac tissue, Am J Physiol 253: 1089-1097, 1987
  37. Tappel, A.L. Lipid Peroxidation Damage to Cell Components. Fed, 1973
  38. Holley, A.E. and Cheeseman, K.H. Measuring free radical reaction in vivo. Bri. Med. Bull 49(3):494-505, 1993 https://doi.org/10.1093/oxfordjournals.bmb.a072626
  39. Love, S., Barber, R., Wilcock, G.K. Increased poly(ADP-ribosyl) ation of nuclear proteins in Alzheimer's disease. Brain, 122: 247-253, 1999 https://doi.org/10.1093/brain/122.2.247
  40. Zhao, M.L., Liu, J.S., He, D., Dickson, D.W., Lee, S.C. Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Research 813(2):402-405, 1998 https://doi.org/10.1016/S0006-8993(98)01023-3