Chemical and Spectroscopic Characterization of Soil Humic and Fulvic Acids and Sorption Coefficient of Phenanthrene: A Correlation Study

토양 휴믹물질의 화학적.분광학적 특성에 따른 페난트린 흡착상수와의 상관성 규명에 대한 연구

  • Lee, Doo-Hee (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Seung-Sik (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 이두희 (서울산업대학교 환경공학과) ;
  • 이승식 (서울산업대학교 환경공학과) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Published : 2008.11.30

Abstract

In this study, the organic carbon normalized-sorption coefficients (Koc) for the binding affinity of phenanthrene (PHE) to 16 different soil humic and fulvic acids of various origins were determined by fluorescence quenching. The humic and fulvic acids used in this study were isolated from 6 different domestic soils including Mt. Hanla soil, IHSS standard soil and peat as well as Aldrich humic acid and characterized by elemental composition, ultraviolet absorption at 254 nm, composition of main structural fragments determined by CPMAS $^{13}$C NMR. The Koc values($\times$10$^4$, L/kg C) for each of HA and FA samples were in the range of 1.48$\sim$8.65 and higher in HA compared to that of FA(3.13$\sim$8.65 vs 1.48$\sim$2.48) in the experimental condition([PHE]/[HS] = 0.02$\sim$0.2(mg/L)/(mg-OC/L), pH 6). The correlation study between the structural descriptors of humic and fulvic acids and log Koc values of phenanthrene, show that the magnitude of Koc values positively correlated with the UV$_{254}$ absorptivity([ABS]$_{254}$) and two $^{13}$C NMR descriptors (C$_{Ar-H,C}$, $\sum$C$_{Ar}$/$\sum$C$_{Alk}$), while negatively correlated with the independent descriptors of the(N+O)/C atomic ratios and $^{13}$C NMR descriptors (I$_{C-O}$/I$_{C-H,C}$). These results confirmed that the binding affinity for the hydrophobic organic compound, phenanthrene are significantly influenced by the polarity and aromaticity of soil humc and fulvic acids.

본 연구에서는 다양한 토양 휴믹산(HA) 및 풀빅산(FA)을 대상으로 형광소광법을 이용한 페난트린(PHE)과의 유기탄소 표준화 분배계수(Koc)를 도출하고, 각 휴믹물질의 화학적 및 분광학적 물질특성과 PHE에 대한 Koc와의 상관성을 조사하였다. 휴믹물질은 한라산 토양을 포함한 국내 5개 지역의 토양과 국제휴믹학회(IHSS) 표준토양 및 이탄에서 추출한 HA와 FA 그리고 Aldrich사에서 구입한 HA 등 총 16종을 사용하였다. HA와 FA의 물질특성은 원소성분비와 254 nm에서의 UV 흡광도 및 $^{13}$C NMR을 이용한 탄소형태별 분포 등을 조사하였다. 본 실험조건([PHE]/[HS] = 0.02$\sim$0.2(mg/L)/(mg-OC/L), pH 6)에서의 토양 휴믹물질의 Koc 값 ($\times$10$^4$, L/kg C)은 1.48$\sim$8.65의 범위이었으며, HA가 FA에 대하여 높게 나타났다(3.13$\sim$8.65 vs 1.48$\sim$2.48). log Koc 값과 물질특성과의 상관성 분석 결과, Koc값은 분자극성도((O+N)/C) 및 산소-포함 탄소 함량비(I$_{C-O}$/I$_{C-H,C}$) 등과는 강한 음(-)의 상관성을 보였으며, 254 nm에서의 UV 흡광도([ABS]$_{254}$)와 방향족탄소함량(C$_{Ar-H,C}$, $\sum$C$_{Ar}$/$\sum$C$_{Alk}$) 등과는 강한 양(+)의 상관성을 보였다. 이로부터 페난트린과 같은 소수성유기화합물과의 결합능력은 휴믹물질의 분자극성도가 낮을수록 그리고 분자의 불포화도와 방향족성이 높을수록 증가함을 확인하였다.

Keywords

References

  1. Chiou, C. T., Partition and adsorption of organic contaminants in environmental systems, John Wiley & Sons, Hoboken, NJ(2002)
  2. Edwards, N., "Polynuclear aromatic hydrocarbons(PAHs) in the terrestrial - A review," J. Environ. Qual., 12, 427-441(1983) https://doi.org/10.2134/jeq1983.00472425001200040001x
  3. US EPA(Environmental Protection Agency) Home Page, http://www.epa.gov/ttn/atw/hlthef(2003)
  4. Means, J. C., Wood, S. G., Hassett, J. J., and Banwart, W. L, "Sorption of polynuclear aromatic hydrocarbons by sediments and soils," Environ. Sci. Technol., 14, 1524-1528(1980) https://doi.org/10.1021/es60172a005
  5. Holman, H. Y. N., Nieman, K., Sorensen, D. L., Miller, C. D., Martin, M. C., Borch, T., McKinney, W. R., and Sims, R. C., "Catalysis of PAH biodegradation by humic acid shown in synchrotron indfared studies," Environ. Sci. Technol., 35(6), 1270-1280(2002)
  6. Guerin, W. F. and Boyd, S. A., "Bioavailability of naphthanene associated with natural and synthetic sorbents," Water Res., 31, 1504-1512(1997) https://doi.org/10.1016/S0043-1354(96)00402-2
  7. urkhard, L. P., "Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals," Environ. Sci. Technol., 34, 4663-4668(2000) https://doi.org/10.1021/es001269l
  8. Xing, B., "Sorption of napthalene and phenanthrene by soil humic acids," Environ. Pollut., 111, 303-309(2001) https://doi.org/10.1016/S0269-7491(00)00065-8
  9. Huang, W., Peng, P., Yu, Z., and Fu, J., "Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments," Appl. Geochem., 18, 955-972(2003) https://doi.org/10.1016/S0883-2927(02)00205-6
  10. Chin, Y. P., Aiken, G. R., and Danielsen, K. M. "Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity," Environ. Sci. Technol., 31, 1630-1635(1997) https://doi.org/10.1021/es960404k
  11. Perminova, I. V., Grechishchev, N. Y., and Petrosyan, V. S., "Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptor," Environ. Sci. Technol., 33, 3781-3787(1999) https://doi.org/10.1021/es990056x
  12. Chefetz, B., Deshmukh, A. P., and Hatcher, P. G., "Pyrene Sorption by Natural Organic Matter," J. Environ. Sci. Technol., 34, 2925-2930(2000) https://doi.org/10.1021/es9912877
  13. Salloum, M. J., Chefetz, B., and Hatcher, P. G., "Phenanthrene sorption by aliphatic-rich organic matter," Environ. Sci. Technol., 36, 1953-1958(2002) https://doi.org/10.1021/es015796w
  14. Aiken, G. R., Mcknight, D. M., Wershaw, R. L. and MacCharthy, P. "An Introduction to Humic Substances in Soil, Sediment, and Water", In Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation, and Characterization(G. R. Aiken, D. M., MaKnight and R. L. Wershaw, eds.), John Wiley and Sons, USA(1985)
  15. Stevenson, F. J., Humus Chemistry: Genesis, Composition, Reactions, John Wiley & Sons, New York(1982)
  16. Hu, W. G., Mao, J., Xing, B., and Rohr, K. S., "Poly (metylene) crystallites in humic substances detected by nuclear magnetic resonance," Environ. Sci. Technol., 34(3), 530-534(1999) https://doi.org/10.1021/es990506l
  17. Kramer, R. W., Kujawinski, E. B. and Hatcher, P. G., "Identification of black carbon derived structures in a volcanic ash soil humic acid by fourier transform ion cyclotron resonance mass spectrometer," Environ. Sci. Technol., 38, 3387-3395(2004) https://doi.org/10.1021/es030124m
  18. 신현상, 이동석, 강기훈, "분자량별 분류에 따른 휴믹산 의 구조적 특성 및 Eu(III)과의 착물반응 특성 비교에 대한 연구," 분석과학, 14(2), 160-166(2001)
  19. IHSS, International Humic Substance Society Home Page, http://www.ihss.gatech.edu/(1981)
  20. 이창훈, 신현상, 강기훈, "피트모스에서 추출한 휴믹물질 (휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명," 지하수토양환경, 9(4), 42-51(2004)
  21. The Canadian Sphagnum Peat Moss Association Home Page, http://www.peatmoss.com(1996-2002)
  22. Leenheer, J. A., McKnight, D. M., Thurman, E. M., and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado(1989)
  23. Peuravuori, J., "Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement," Anal Chim. Acta., 429, 65-73(2001) https://doi.org/10.1016/S0003-2670(00)01258-7
  24. MaCarthy, J. F., Morgan, J. J., "Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: Binding and dissociation," Environ. Sic. Technol., 19, 1072-1076(1985) https://doi.org/10.1021/es00141a008
  25. Laor, T. and Rebhun, M., "Evidence for nonlinear binding of PAHs to dissolved humic acids," Environ. Sci. Technol., 36, 955-961(2002) https://doi.org/10.1021/es001996g
  26. Gauther, T. D., Seitz, W. R., and Grant, C. L., "Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values," Environ. Sci. Technol., 21, 243-248(1987) https://doi.org/10.1021/es00157a003
  27. Wershaw, R. L. and Mikita, M. A., NMR of humic substances and coal, Lewis Publisher, Michigan(1987)
  28. Shin, H. S. and Moon, H., "An "Average" structure proposed for soil fulvic acid aided by DEPT/QUAT $^{13}$C NMR pulse techniques," Soil Sci., 161, 250-256(1996) https://doi.org/10.1097/00010694-199604000-00006
  29. Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., and Smeyers-Verbeke, J., Handbook of chemometrics and qualimetrics: part A, Elsevier( 1997)
  30. Chin, Y., Aiken, G., and O'Loughlin, E., "Molecular weight, poly-dispersity, and spectroscopic properties of aquatic humic substances," Environ. Sci. Technol., 28, 1853-1858(1994) https://doi.org/10.1021/es00060a015
  31. Kang, S., Amarasirwardena, D., Vebeman, P., and Xing, B., "Characterization of ten sequentially extracted humic acids and a humin from a soil in western Massachusetts," Soil Sci., 168, 880-887(2003) https://doi.org/10.1097/01.ss.0000106404.84926.b0
  32. Tanake, F., Fukushima, M., Kikuchi, A., Yabuta, H., Ichikawa, H., and Tatsumi, K., "Influence of chemical chracteristics of humic substances on the partition coefficient of a chlorinated dioxin," Chemosphere, 58, 1319-1326(2005) https://doi.org/10.1016/j.chemosphere.2004.10.008