Estimation of Suspended Sediment Load in Imha-Andong Watershed using SWAT Model

SWAT 모델을 이용한 임하.안동 유역의 부유사량 발생량 추정

  • Kim, Jeong-Kon (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Son, Kyong-Ho (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Noh, Joon-Woo (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Lee, Sang-Uk (Korea Institute of Water and Environment, Korea Water Resources Corporation)
  • 김정곤 (한국수자원공사 수자원연구원) ;
  • 손경호 (한국수자원공사 수자원연구원) ;
  • 노준우 (한국수자원공사 수자원연구원) ;
  • 이상욱 (한국수자원공사 수자원연구원)
  • Published : 2008.12.31

Abstract

For efficient turbid water management a SWAT model was established for the Imha-Andong watershed where serious turbid water problems have frequently occurred. To evaluate soil loss combined with rainfall runoff process, the analysis focused on comparing the daily runoff discharge and concentration of suspended sediment (SS) using measured data sets. The results of annual SS load analysis for each sub-basin using the calibrated model showed that in the entire target watershed the soil loss ranged from 0.7 to 5.9 tons/ha in year 2005 and from 3.0 to 34.0 tons/ha in year 2003 when the typhoon 'Maemi' severly affected the area. In the future, it is suggest to increase model simulation accuracies supported by a long-term and extensive monitoring to enhance basin-wide suspended sediment estimation and management.

본 연구에서는 고탁수 문제가 자주 발생하는 임하 안동 유역을 대상으로 효율적인 탁수 관리를 위한 유출현황 및 토사 유실평가를 목적으로 SWAT 모델을 구축하였다. 홍수기에 측정된 유량과 부유사 농도를 이용하여 모형의 검 보정을 실시하였다. 검 보정된 SWAT 모형을 이용하여 소유역별 연간 부유사 부하량에 대한 공간 분석결과, 전체 유역 대상으로 2005년에 최저 0.7$\sim$5.9 tons/ha에서 태풍 매미에 의해 심한 영향을 받은 2003년에 최고 3.0$\sim$34.0 tons/ha의 부하량을 보였다. 향후 유역전체의 효율적인 유사량 추정 및 저감대책마련을 위해서는 장기간에 걸쳐 보다 정확하고 광범위한 모니터링과 이를 활용한 모델의 정도 향상이 수반되어야 할 것이다.

Keywords

References

  1. Batuca, D. G. and Jordaan, J. M., Silting and desilting of reservoirs, A.A.Balkema, Rotterdam, Netherlands(2000)
  2. 한국수자원공사, 임하댐 탁수저감 방안수립 최종보고서 (2004)
  3. Verstraeten, G. and Poesen, J., "Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate," Geomorphology, 40, 123-44(2001) https://doi.org/10.1016/S0169-555X(01)00040-X
  4. Flanagan, D. C., Ascough II, J. C., Nicks, A. D., Nearing, M. A., and Lafle, J. M., Overview of the WEPP erosion prediction model. In USDA-Water Erosion Prediction Project. Hillslope Profile and Watershed Model Documentation. USDA. Indiana(1995)
  5. de Roo APJ, Wesseling, C. G., and Ritsema, C. J., "LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I Theory, input and output," Hydrol. Proc., 10(8), 1107-117(1996) https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4
  6. Morgan R. P. C., Quinton, J. N., and Smith, R. E., Govers, G., Poesen, J., Auerswald, K., Chisci, G., Torri, G, D., and Styczen, M. E., "The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments," Earth Surface Processes and Landforms, 23, 527-44(1998) https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  7. Arnold, J. G., Williams, A., Srinivasan, R., King, B., and Griggs, A., SWAT, soil and water assessment tool. Temple, TX 76502. ARS, USDA(1994)
  8. Di Luzio, M., Srinivasan, R., Arnold, J. G., and Neitsch, S., Arcview Interface for SWAT 2000 User's Guide. (http://www.brc.tamus.edu/swat/downloads/doc/swatav2000.pdf), (2002)
  9. Wischmeier, W. H., "Cropping-management factor evaluation for a universal soil loss equation," Proceedings of the Soil Science Society of America, 24, 322-326(1960)
  10. Williams, J. R., Sediment yield prediction with universal equation using runoff energy factor. Agricultural Research Service. USDA. ARS-S-40, Present and prospective technology for predicting sediment yield and sources, Preceeding of the sediment yield workshop, pp. 244-252 (1975)
  11. Williams, J. R. and Berndt, H.D., "Sediment Yield Prediction based on Watershed Hydrology," Transactions of American Society of Agricultural Engineers, 20(6), 1100-1104(1977) https://doi.org/10.13031/2013.35710
  12. Bagnold, R. A., "Bedload transport in natural rivers," Water Resour. Res., 13(2), 303-312(1977) https://doi.org/10.1029/WR013i002p00303
  13. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R., Soil and Water Assessment Tool User's Manual Version 2000(2002)
  14. 한국수자원공사, 저수지 연계운영을 통한 탁도관리방안 연구(2차년도), (2006b)
  15. 배덕효, 이병주, 정일원, "위성영상 피복 분류에 대한 CN값 산정(I): - CN값 산정-," 한국수자원학회논문집, 한국수자원학회, 36(6), 985-997(2003)
  16. 오경두, 전병호, 양경규, 안원식, 조병호, "도시지역 CN산정연구," 한국수자원학회논문집, 한국수자원학회, 38(12), 1009-1020(2005) https://doi.org/10.3741/JKWRA.2005.38.12.1009
  17. Williams, J. R., "Chapter 25: The EPIC model," p. 909-1000. In V.P. Singh (ed.) Computer models of watershed hydrology, Water Resources Publications(1995)
  18. Nash, J. E. and Sutcliffe, J. V., "River flow forecasting through conceptual models part I - A discussion of principles," J. Hydrology, 10, 282-290(1970) https://doi.org/10.1016/0022-1694(70)90255-6
  19. 한국수자원공사, GIS 기반 댐 유역간 토사 유실량 비교 분석 및 시스템 구축(1차년도), (2006a)
  20. Renard K. G., Foster, G. R., Weesies, G. A., and Porter, J. P., "RUSLE: Revised Universal Soil Loss Equation," J. Soil and Water Conservation, 46(1), 30-3(1991)
  21. Lenhart, T., Rompaey, A. V., Fohrer, A. N., Frede, H. G., and Govers, G., "Considering spatial distribution and deposition of sediment in lumped and semi-distributed models," Hydrological Processes, 19, 785-794(2005) https://doi.org/10.1002/hyp.5616