Phenol Removal Using Horseradish Peroxidase(HRP)-Mediated Polymerization Reaction in Saturated Porous Media

다공성 포화 매질에서 효소 중합반응을 이용한 페놀 제거

  • Published : 2008.10.31

Abstract

This paper reports experimental results, demonstrating the feasibility of horseradish peroxidase(HRP) and H$_2$O$_2$ to reduce phenol transport in saturated porous media. A laboratory-scale packed column reactor(ID: 4.1 cm, sand-bed height 12 cm) column was utilized to simulate injection of HRP and H$_2$O$_2$ into an aquifer contaminated with phenol. Effluent concentrations of phenol and polymerization products were monitored before and after enzyme addition under various experimental conditions(enzyme dose: 0$\sim$2 AU/mL, [ionic strength]: 5$\sim$100 mM, pH: 5$\sim$9). The concentration of phenol in the column effluent was found to decrease by nearly 90% in the presence of HRP(2 AU/mL) and H$_2$O$_2$ in the continuous flow system at pH 7 and ionic strength 20 mM. The influent phenol was converted in the system to insoluble precipitate, which deposited in pore spaces. The remains were discharged as soluble oligomers. About 8% of total pore volume in column system was decreased by deposition of polymer produced.

본 연구에서는 다공성 포화매질내에서 페놀의 제거를 위해 효소 중합반응의 적용성을 조사하였다. 페놀로 오염된 지하수의 모의실험으로 실험실 규모의 모래 충진 칼럼(ID: 4.1 cm, 충진높이: 12 cm)에 HRP와 과산화수소수를 주입하여 페놀 제거율 및 고분자 생성율에 대한 효소량(0$\sim$2 AU/mL), 이온강도(5$\sim$100 mM), pH(5$\sim$9)의 영향을 평가하였다. 페놀의 제거율은 효소량 2.0 AU/mL, 이온강도 20 mM, pH 7에서 각각 유입농도의 90% 이상을 유지하였다. 유입페놀은 다공성 매질에 축적되는 불용성 고분자와 유출되는 용해성 고분자들로 변환되었다. 최대 약 8%의 공극부피가 고분자화 반응으로부터 생산된 불용성 고분자에 의해 감소되었다.

Keywords

References

  1. Clean Water Act. section 307. In environmental statutes, Rockville, MD(1985)
  2. Prpich, G. P. and Daugulis, A. J., 'Biodegradation of a phenolic mixture in a solid?liquid two'phase partitioning bioreactor,' Appl. Microbiol. Biotechnol., 72, 607-615(2006) https://doi.org/10.1007/s00253-006-0311-z
  3. Gisi, D., Stucki, G., and Hanselmann, K. W., 'Biodegradation of the pesticide 4, 6'dinitro'ortho'cresol by microorganisms in batch cultures and in fixed'bed column reactors,' Appl. Microbiol. Biotechnol., 48, 441-448(1997) https://doi.org/10.1007/s002530051077
  4. Heitkamp, M. A. and Cerniglia, C. E., 'Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field,' Appl. Microbiol. Biotechnol., 54, 1612-1614(1988)
  5. Karam, J. and Nicell, J. A., 'Potential applications of enzymes in waste treatment,' J. Chem. Technol. Biotechnol., 69, 141-153(1997) https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
  6. Klibanov, A. M., Alberti, B. N., Morris, E. D., and Felshin, L. M., 'Enzymatic removal of toxic phenols and anilines from water,' J. Appl. Biol. Chem., 2, 414-421(1980)
  7. Ghioureliotis, M. and Nicell, J. A., 'Toxicity of soluble products from the Peroxidase'catalyzed polymerization of substituted phenolic compounds,' J. Chem. Technol. Biotechnol., 70, 98-106(2000)
  8. Shannon, M. J. R. and Bartha, R., 'Immobilization of leachable toxic soil pollutants by using oxidative enzymes,' Environ. Microbiol., 54, 1719-1723(1998)
  9. Dunford, H. B., 'Horseradish peroxidase: structure and kinetic properties,' Peroxidases in Chemistry and Biology, II. CRC press, Boca Raton, FL, 2, 1-24(1991)
  10. Klibanov, A. M. and Morris, E. D., 'Horseradish peroxidase for the removal of carcinogenic aromatic amines from water,' Enzyme Microb. Technol., 3, 119-122(1981) https://doi.org/10.1016/0141-0229(81)90069-7
  11. Yamazaki, I., Mason, S., and Piette, L., 'Identification by electron paramagnetic resonance spectroscopy of free radicals generated from substrates by peroxidase,' J. Biol. Chem., 235, 2444-2449(1960)
  12. Davidenko, T. I., Oseychuk, O. V., Sevastyanov, O. V., and Romanovskaya, I. I., 'Peroxidase oxidation of phenol,' Appl. Microbiol. Biotechnol., l40, 542-546(2004) https://doi.org/10.1023/B:ABIM.0000046986.69900.64
  13. Wagner, M. and Nicell, J. A., 'Detoxification of phenolic solution with horseradish peroxidase and hydrogen peroxide,' Water Res., 36, 4041-4052(2002) https://doi.org/10.1016/S0043-1354(02)00133-1
  14. Bollag, J.'M., Shuttleworth, K. L., and Anderson, D. H., 'Laccase'mediated detoxification of phenolic compounds,' Appl. Environ. Microbiol., 54, 3086-3091(1998)
  15. Aitken, M. D., Massey, J. I., Chen, T., and Heck, P. E., 'Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants,' Water Res., 28(9), 1879-1889(1994) https://doi.org/10.1016/0043-1354(94)90163-5
  16. Ghioureliotis, M. and Nicell, J. A., 'Toxicity of soluble products from the Peroxidase'catalyzed polymerization of substituted phenolic compounds,' J. Chem. Technol. Biotechnol., 70, 98-106(2000)
  17. Everse, J., Everse, K. E., and Grisham, M. B.(Editors), Peroxidases in Chemistry and Biology, Volume, II. CRC Press, Inc. Boca Raton, FLA(1991)
  18. Rodriguez'Lopez, J. N., Escribano, J., and Garcia'Canovas, F., 'A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3'methyl'2'benzothiazolinone hydrazone,' Anal. Biochem., 216, 205-212(1994) https://doi.org/10.1006/abio.1994.1026
  19. Davidenko, T. I., Oseychuk, O. V., Sevastyanov, O. V., and Romanovskaya, I. I., 'Peroxidase oxidation of phenol,' Appl. Microbiol. Biotechnol., l40, 542-546(2004) https://doi.org/10.1023/B:ABIM.0000046986.69900.64
  20. Nicell, J. A., Bewtra, J. K., Pierre, C.C. St., Biswas, N., and Taylor, K. E., 'Enzyme catalyzed polymerization and precipitation of aromatic compounds from wastewater,' Water Sci. Technol., 25, 157-164(1992)
  21. Aitken, M. D., 'Stability testing of ligninase and Mn peroxidase from Phanerochaete chrysosporium,' Biotechnol. Bioeng., 34, 1251-1260(1989) https://doi.org/10.1002/bit.260341003
  22. Wu, Y., Taylor, K. E., Biswas, N., and Bewtra, J. K., 'A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol,' Enzyme Microb. Technol., 22, 315-322(1983) https://doi.org/10.1016/S0141-0229(97)00197-X
  23. Nicell, J. A., Al'Kassim, L., Bewtra, J. K., and Taylor, K. E., 'Treatment of wastewaters by enzyme catalyzed polymerization and precipitation,' Biodeterioration Abstracts, 7, 1-8(1993b)
  24. Huang, Q., Tang, J., and Weber, Jr. W. J., 'Precipitation of enzyme'catalyzed phenol oxidative coupling products: Background ion and pH effects,' Water Res., 39, 3021-3027(2005) https://doi.org/10.1016/j.watres.2005.05.005
  25. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., Environmental Organic Chemistry. Wiley, New York, 437'484(1993)