Remediation of Mine Tailings Contaminated with Arsenic and Heavy Metals: Removal of Arsenic by Soil Washing

비소와 중금속으로 오염된 광미의 정화: 토양세척에 의한 비소 제거

  • Kim, Tae-Suk (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Myoung-Jin (Division of Civil and Environmental Engineering, Korea Maritime University)
  • 김태석 (한국해양대학교 토목환경공학과) ;
  • 김명진 (한국해양대학교 토목환경공학과)
  • Published : 2008.08.31

Abstract

In the present paper, a study has been performed on remediating mine tailings around abandoned mine contaminated with high concentrations of arsenic and heavy metals using the technique of soil washing. Through the removal experiment of arsenic, the optimal conditions in the type and concentration of washing reagent, mixing ratio of mine tailings and washing reagent, and washing time were derived. Results showed that the most effective washing reagents to remove arsenic from mine tailings were oxalic acid(72% removal efficiency) and phosphoric acid(65%), while the oxalic acid(89%) was the most effective in removing the heavy metals containing Cu. In addition, the most economical and efficient washing concentration was 0.25 M and the most suitable washing time was 30 minutes. The optimal mixing ratio of mine tailings and washing reagent was 1 : 20(mass/vol) from the viewpoint of minimization of wastewater produced after the washing, as well as the washing effectiveness. Although the mixture of washing reagents did not help in removal of arsenic, it could lead to much elevated synergy effect on removing Cu and Zn, compared with the single reagent.

본 연구에서는 비소와 중금속으로 동시에 오염된 광미로부터 토양세척에 의해 비소를 제거하는 실험을 하였다. 중금속 일부도 함께 제거되었다. 최적의 세척효율을 나타내는 세척제의 종류 및 농도, 광미와 세척제의 혼합비, 세척시간 등의 조건을 도출해내었다. 비소를 제거하는데 가장 효과적인 세척제는 옥살산(72% 제거효율)과 인산(65%)이었고, 옥살산(89%)은 Cu를 포함한 중금속을 제거하는데도 매우 효과적이었다. 최적의 세척제 농도는 0.25 M이고, 세척시간은 30분이었다. 토양세척 후 발생하는 폐수를 최소화하고 비소를 효과적으로 제거할 수 있는 광미와 세척제의 적정비율은 1 : 20(질량 : 부피)이었다. 혼합세척제는 단일 세척제와 비교해서 비소제거효율에 차이가 없었으나 Cu와 Zn을 제거하는데 효과가 좋았다.

Keywords

References

  1. 환경부, 폐금속광산 토양환경 관리대책(2007)
  2. Mulligan, C. N., Yong, R. N., and Gibbs, B. F., 'Remediation technologies for metal-contaminated soils and groundwater: an evaluation,' Eng. Geo., 60, 193-207 (2001) https://doi.org/10.1016/S0013-7952(00)00101-0
  3. 김명진, '지질 환경재해 및 복원기술:중금속 오염토양의 정화 및 복원,' 한국자원공학회.한국지하수토양환경학회.대한광업진흥공사 공동 학술 심포지엄 논문집, 대한광업진흥공사, 서울, pp. 117-141(2002)
  4. Tokunaga, S. and Hakuta, T., 'Acid washing and stabilization of an artificial arsenic-contaminated soil,' Chemosphere, 46, 31-38(2002) https://doi.org/10.1016/S0045-6535(01)00094-7
  5. Ko, I., Lee, C., Lee, K., Lee, S., and Kim, K., 'Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing,' Environ. Prog., 25(1), 39-48(2006) https://doi.org/10.1002/ep.10101
  6. Jang, M., Hwang, J. S., Choi, S. I., and Park, J. K., 'Remediation of arsenic-contaminated soils and washing effluents,' Chemosphere, 60, 344-354(2005) https://doi.org/10.1016/j.chemosphere.2004.12.018
  7. Alam, M. G. M., Tokunaga, S., and Maekawa, T., 'Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate,' Chemosphere, 43, 1035-1041(2001) https://doi.org/10.1016/S0045-6535(00)00205-8
  8. 정익재, '폐금속 광산 광미의 중금속 불용화,' 서강대학교, 박사학위논문(2001)
  9. Grove, J. H., Fowler, C. S., and Sumner, M. E., 'Determination of the charge character of selected acid soils,' Soil Sci. Soc. Am. J., 46, 32-38(1982) https://doi.org/10.2136/sssaj1982.03615995004600010006x
  10. Sumner, M. E. and Miller, W. P., 'Cation exchange capacity and exchange coefficients,' Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, Inc. pp. 1201-1229(1996)
  11. Zelazny, L. W., He, L., and Vanwormhoudt, A., 'Charge analysis of soils and anion exchange,' Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, Inc., pp. 1244-1248(1996)
  12. Keith, L. H., 'Complilation of EPA's Sampling and Analysis Methods,' pp. 99-100(1998)
  13. Manful, G., 'Occurrence and Ecochemical Behavior of Arsenic in a Goldsmelter Impacted Area in Ghana,' PhD dissertation, Centrum voor milieusaneringen aan de RUG.(1992)
  14. Herreweghe, S. V., Swennen, R., Vandecasteele, C., and Cappuyns, V., 'Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples,' Environ. Pollut., 122, 323-342(2003) https://doi.org/10.1016/S0269-7491(02)00332-9
  15. Rao, C. R. M, Sahuquillo, A., and Lopez Sanchez, J. F., 'A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials,' Water, Air, Soil Pollut., 189, 291-333(2008) https://doi.org/10.1007/s11270-007-9564-0
  16. Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 'Arsenic fractionation in soils using an improved sequential extraction procedure,' Anal. Chim. Acta, 436(2), 309-323(2001) https://doi.org/10.1016/S0003-2670(01)00924-2
  17. 안주성, '금은 광산활동에 의한 비소 및 중금속 환경오염과 광산폐기물 격리저장 처리기법,' 서울대학교, 박사학위논문(2000)
  18. Onyatta, J. O. and Huang, P. M., 'Kinetics of cadmium release from selected tropical soils from Kenya by lowmolecular-weight organic acids,' Soil Sci., 168(4), 234-252(2003) https://doi.org/10.1097/00010694-200304000-00002