Treatment of Wastewater Containing Cu(II)-EDTA Using Ferrate in Sequencing Batch Scale System

연속회분식 반응 장치에서 Ferrate를 이용한 Cu(II)-EDTA 함유 폐수 처리 연구

  • Kim, Hyoung-Uk (Department of Environmental Engineering, Kwandong University) ;
  • Kim, Byeong-Kwon (Department of Environmental Engineering, Kwangwoon University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University) ;
  • Yang, Jae-Kyu (Division of General Education, Kwangwoon University) ;
  • Kim, Hyun-Ook (Department of Environmental Engineering, University of Seoul) ;
  • Kwan, Jung-An (Department of Environmental Engineering, University of Seoul) ;
  • Im, Hang-Sik (Korea Testing & Research Institute)
  • Published : 2008.07.31

Abstract

The higher valence state of iron i.e., Fe(VI) was employed for the treatment of Cu(II)-EDTA in the aqueous/waste waters. The ferrate(VI) was prepared through wet oxidation of Fe(III) by sodium hypochlorite. The purity of prepared Fe(VI) was above 93%. The stability of Fe(VI) solution decreased as solution pH decreased through self decomposition. The reduction of Fe(VI) was obtained by using the UV-Visible measurements. The dissociation of Cu(II)-EDTA complex through oxidation of EDTA using Fe(VI) and subsequent treatment of organic matter and metal ions by Fe(III) reduced from Fe(VI) in bench-scale of continuous flow reactor were studied. The removal efficiencies of copper were 69% and 79% in pH control basin and reactor, respectively, at 120 minutes as retention time. In addition, Cu(II)-EDTA in the reactor was decomplexated more than 80% after 120 minutes as retention time. From this work, a continuous treatment process for the wastewater containing metal and EDTA by employing Fe(VI) as muluti-functional agent was developed.

높은 산화상태를 갖는 철화합물인 ferrate(Fe$^{6+}$)를 Cu(II)-EDTA가 오염된 폐수를 처리하는데 적용하였다. Fe(VI)는 3가 철염에 차아염소산을 가하여 습식 산화시키는 방법을 적용하여 제조하였으며 93% 이상의 순도를 얻을 수 있었다. 용액에서의 Fe(VI)의 안정성은 pH가 낮을수록 자체분해반응이 가속화됨으로써 감소하는 것으로 나타났다. 자외선-가시광선 분광광도계를 사용하여 Fe(VI)의 환원정도를 측정하였다. 실험실규모의 연속회분식 반응장치를 Cu(II)-EDTA 함유 폐수처리에 적용함으로서 Cu(II)-EDTA의 산화특성, Fe(III)에 대한 구리이온의 거동 특성 그리고 유기물의 제거능을 조사하였다. 연속처리를 위한 반응조 및 pH 조정조에서 총 구리의 제거는 체류시간 120분에서 각각 69% 및 75%로서 최대 제거율을 보였으며 체류시간 120분 경과 후 Cu(II)-EDTA의 비착물화 정도는 80% 이상을 보였다. 본 연구를 통하여 Fe(VI)를 다기능성 처리제로서 사용하여 Cu(II)와 EDTA가 함께 존재하는 폐수를 연속적으로 처리하는 공정을 개발하였다.

Keywords

References

  1. Riley, R. G., Zachara, J. M., and Wobber, F. J., 'Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface,' Science Research., U.S. Department of Energy, DOE/ER-0547T, April(1992)
  2. Manahan, S. E., Fundamentals of Environmental Chemistry, Lewis Publishers : Boca Raton, Florida(1993)
  3. Davis, A. P. and Green, D. L., 'Photocatalytic oxidation of cadmium-EDTA with yitanium dioxide,' Environ. Sci. Technol., 33, 609-617(1999) https://doi.org/10.1021/es9710619
  4. Vohra, M. S. and Davis, A. P., 'TiO2-assisted photocatalysis of lead-EDTA,' Water Res., 34, 952-964(2000) https://doi.org/10.1016/S0043-1354(99)00223-7
  5. Lee, Y. H., Um, I. H., and Yoon, J. Y., 'Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation,' Environ. Sci. Technol., 37, 5750-5756(2003) https://doi.org/10.1021/es034203+
  6. Sharma, V. K., 'Potassium ferrate(VI) : An environmentally friendly oxidant,' Adv. Environ. Res., 6, 143-156 (2002) https://doi.org/10.1016/S1093-0191(01)00119-8
  7. Lee, Y. H., Yoon, J. Y., and Gunten, U. V., 'Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate(Fe(VI)),' Environ. Sci. Technol., 39, 8978-8984(2005) https://doi.org/10.1021/es051198w
  8. Sharma, V. K., Kazma, F., Jiangyong, H., and Ray, A. K., 'Ferrates(iron(VI) and iron(V)) : environmentally friendly oxidants and disinfectants,' J. Water Health., 3, 45-58 (2005) https://doi.org/10.2166/wh.2005.0005
  9. Sharma, V. K., 'Use of iron(VI) and iron(V) in water and wastewater treatment,' Water Sci. Technol., 49, 69-74(2004)
  10. Jiang J-Q. and Lloyd B., 'Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment,' Water Res., 36, 1397-1408(2002) https://doi.org/10.1016/S0043-1354(01)00358-X
  11. Sharma, V. K., Burnett, C. R., Yngard, R., and Cabelli, D. E., 'Iron(VI) and iron(V) oxidation of copper(I) cyanide complex,' Environ. Sci. Technol., 39, 3849-3854 (2005) https://doi.org/10.1021/es048196g
  12. Li, C., Li, X. Z., and Graham, N., 'A study of the preparation and reactivity of potassium ferrate,' Chemosphere, 61, 537-543(2005) https://doi.org/10.1016/j.chemosphere.2005.02.027
  13. Lee, Y., Cho, M., Kim, J. Y., and Yoon, J., 'Chemistry of ferrate(fe(VI)) in aqueouous solution and its applications as a green chemical,' J. Ind. Eng. Chem., 10(1), 161-171(2004) https://doi.org/10.1021/ie50098a038
  14. Licth, S., Naschitz, V., Halperin, L., Lin, L., Chen, J. J., Ghosh, S., and Liu, B., 'Analysis of ferrate(vi) compounds and super-iron fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical charaterization,' J. Power Sources., 101, 167-176(2001) https://doi.org/10.1016/S0378-7753(01)00786-8
  15. Rush, J. D., Zhao, Z., and Bielski, B. H. J., 'Reaction of ferrate(VI)/ferrate(V) with hydrogen peroxide and superoxide anion- a stopped-flow and premix pulse radiolysis study,' Free Rad. Res., 24, 187-198(1996) https://doi.org/10.3109/10715769609088016
  16. Carr, J. D., Kelter, P. B., Tabatabai, A. D., Spichal, D., Erickson, J., and McLaughin, C. W., In Proc. Conf. Water Chlorin. Chem. Environ. Impact Health Effects, R.L. Jolley(Eds.), New York, pp. 1285-1298(1985)
  17. Ma, J. and Liu, W., 'Effectiveness of ferrate(VI) peroxidation in enhancing the coagulation of surface waters,' Water Res., 36, 4959-4962(2002) https://doi.org/10.1016/S0043-1354(02)00224-5