Biosorption Characteristics of Pb and Cu by Ca-alginate Immobilized Algae Spirulina platensis

Ca-alginate에 고정한 Spirulina platensis의 납과 구리 흡착 특성

  • Shin, Taek-Soo (Department of Environmental Engineering, Chungbuk National University) ;
  • Woo, Byoung-Sung (Department of Environmental Engineering, Chungbuk National University) ;
  • Lim, Byung-Seo (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Kwang-Yul (Department of Environmental Engineering, Chungbuk National University)
  • Published : 2008.04.30

Abstract

This study was conducted to research the biosorption characteristics using algae, Spirulina platensis, for the removal of Pb and Cu ions in wastewater. Both of free algal cell and immobilized algae by Ca-alginate were used as bioadsorbent, and experiment was proceed in batch reactor for Pb and Cu ions removal, respectively. In the biosorption of Pb and Cu ions by free Spirulina platensis cell, the adsorption equilibrium reached within 20 minute. The higher adsorbed amount of Pb and Cu was shown as increasing of initial concentration of Pb and Cu, and pH of solution, respectively, and the optimum pH was 4.5$\sim$5.0. Under the conditions of initial concentration of Pb or Cu are 200 mg/L, the maximum amounts of Pb and Cu adsorbed to the unit weight of Spirulina platensis were 86.43 and 57.02 mg/g, respectively, and these values were 1.94 and 1.48 times higher than those of activated carbon under same conditions, respectively. The biosorption kinetics of Pb and Cu ions by free Spirulina platensis cell fitted very well to the Freundlich and Langmuir isotherm. The maximum amount of Pb or Cu adsorbed to the unit mass of adsorbent by the Langmuir isotherm($q_{max}$) represented as 95.24 and 62.50 mg/g, respectively. The FT-IR results of free Spirulina platensis biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution. In the biosorption of Pb and Cu ions by Ca-alginate immobilized algae Spirulina platensis, the adsorption equilibrium reached within 40 min. and observed a little diffusion limitation differed from the free algal cell adsorption.

중금속 제거를 위한 조류 Spirulina platensis의 생물흡착 특성에 관해 연구하기 위하여, 조류 균체와 Ca-alginate를 이용하여 조류를 고정화한 고정체에 대하여 각각 회분식반응기에서 Pb와 Cu의 제거 실험을 하였다. Spirulina platensis 균체에 의한 Pb와 Cu의 생물흡착은 20분 이내에 흡착평형에 도달하였다. Pb와 Cu의 흡착량은 초기 농도가 증가하거나 용액의 pH가 높아짐에 따라 증가하여, pH 4.5$\sim$5.0에서 최적 조건을 나타내었다. Pb 혹은 Cu의 농도가 200 mg/L일 때, Spirulina platensis의 단위 무게당 흡착된 Pb와 Cu의 최대 흡착량은 각각 86.43과 57.02 mg/g이었으며, 이는 같은 조건에서 활성탄보다 1.94와 1.48배 높은 값이다. Spirulina platensis 균체에 의한 Pb와 Cu의 흡착특성은 Freundlich와 Langmuir 흡착등온식에 의해 잘 해석되었으며, Langmuir 흡착등온식에 의해 구한 흡착제 단위 무게당 흡착되는 Pb 혹은 Cu의 최대 흡착량($q_{max}$)은 각각 95.24와 62.50 mg/g이었다. Sp. platensis 균체에 대한 FT-IR 분석결과 여러 가지의 기능기들을 확인하였고, 이러한 기능기들이 수용액상에서 금속 이온과 반응할 수 있다. 조류 Spirulina platensis를 Ca-alginate를 이용하여 고정화한 고정체에 의한 Pb와 Cu의 생물흡착의 경우, 40분 정도에 흡착평형에 도달하여 균체에 의한 경우에 비하여 약간의 확산제한이 관찰되었다.

Keywords

References

  1. Say, R., Denizli, A., and Arica, M. Y., "Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus, Phanerochate chrysosporium," Bioresour. Technol., 76, 67-70(2001) https://doi.org/10.1016/S0960-8524(00)00071-7
  2. Kandah, M., Abu Al-Rub, F. A., Al-Dabaybeh, N., "The aqueous adsorption of copper and cadmium ions on sheep manure", Adsorpt. Sci. Technol., 21, 501-509(2003) https://doi.org/10.1260/026361703771953569
  3. Volesky, B., "Biosorption of Heavy Metals," CRC Press, Inc.(1990)
  4. Angerer, A., Klipp, B., and Braun, V., "Iron transport systems of Serratia marcescens," J. Bacteriol., 174(4), 1378-1387(1992) https://doi.org/10.1128/jb.174.4.1378-1387.1992
  5. Freundlich, H., "Colloid and Capillary Chemistry," Metheun, London(1926)
  6. Langmuir, I. J., "The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum," J. American Chem. Soc., 40, 1361-1403(1918) https://doi.org/10.1021/ja02242a004
  7. 北川睦夫, "활성탄 수처리 기술과 관리," 신광문화사 (1995)
  8. Horikoshi, T. A., Nakajima, and Sakaguchi, T., "Studies on the accumulation of heavy metal elements in biological systems. XIX. Accumulation of uranium by microorganisms," European Journal of Applied Microbiology and Biotechnology, 12, 90-96(1981) https://doi.org/10.1007/BF01970040
  9. Doyle, R. J., Matthews, T. H., and Streips, U. N., "Chemical basis for selectibity of metal ions by the Bacillus subtilis cell wall," Journal of Bacteriology, 143(1), 471-480(1980)
  10. Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu, Z., "Lead biosorption and desorption by intact and pretreated spirulina maxima biomass," Chemosphere, 58, 125-130(2005) https://doi.org/10.1016/j.chemosphere.2004.08.055
  11. Mitchell, R., "Environmental microbilogy," John Widly and Sons, New York, 83-101(1993)
  12. Muraleedharan, T. R. and Venkobachar, C., "Mechanism of biosorption of copper(II) by Gonoderma iucidum," Biotechnol. Bioeng., 35, 320-325(1990) https://doi.org/10.1002/bit.260350314
  13. Tobin, J. M., Copper, D. G., and Neufeld, R. G., "Investigation of the mechanism of metal uptake by denatured Rizopus arrhizus biomass," Enzyme Microbiol. Technol., 12, 591-595(1990) https://doi.org/10.1016/0141-0229(90)90132-A
  14. Aickin, R. M. and Dean, A. C. R., "Lead accumulation by Pseudomonas fluorescens and by a Citrobacter sp.," Microbios Lett., 9, 55-66(1979)