DOI QR코드

DOI QR Code

Economic Threshold of Meloidogyne incognita for Greenhouse Grown Cucumber in Korea

오이 시설재배시 고구마뿌리혹선충의 경제적피해한계

  • Kim, Dong-Geun (Department of Agricultural Environment, Gyeongbuk Agriculture Technology Administration) ;
  • Lee, Joong-Hwan (Department of Agricultural Environment, Gyeongbuk Agriculture Technology Administration)
  • 김동근 (경북농업기술원 환경농업연구과) ;
  • 이중환 (경북농업기술원 환경농업연구과)
  • Published : 2008.08.01

Abstract

To determine the economic threshold level of Meloidogyne incognita on cucumber in greenhouse conditions, cucumber seedlings(Cucumis sativa L. cv. 'Super Manchon') grafted on 'Jangsushintozoa'(Cucurbita maxima x Cu. moschata) were planted in wooden boxes($30{\times}40{\times}15cm,\;L{\times}W{\times}D$) under a plastic house in August 01 and harvested from Sep. 01-Oct. 30, 2006. The initial nematode population densities(Pi) in the wooden boxes were adjusted to 0, 10, 30, 100, 300, and 600 second-stage juveniles(J2)/100 $cm^3$ soil. The relationship of total fruit yield to Pi level could be adequately described by a linear regression equation, $Y=0.82-0.04{\cdot}Log_{10}$(Pi+1). Initial nematode densities(Pi) before planting in excess of 5 J2/1,000 $cm^3$ soil caused in total yields loss that is equivalent to the costs of granular nematicide application; Pi level in excess of 25 J2/1,000 $cm^3$ soil caused in total yields loss that exceed the costs for application of fumigants at current control costs. We propose two different management strategies depending on nematode densities, (i) application of non-fumigant granular nematicides for M. incognita Pi level of 5 J2/1,000 $cm^3$ soil and (ii) fumigant treatment with Pi level over 25 J2/1,000 $cm^3$ soil. Soil samples to determine population density of Meloidogyne spp. for advisory purposes should be taken several months before planting time, which allows a period of time enough for implementing management procedures.

고구마 뿌리혹선충(Meloidogyne incognita)의 시설재배 오이에 대한 경제적 피해한계를 조사하기 위하여 비닐하우스 내에 합판으로 만든 박스($30{\times}40{\times}15cm$)를 묻고 박스 내 토양 $100cm^3$당 뿌리혹선충 유충의 밀도를 0, 10, 30, 100, 300, 600마리로 조정된 토양을 넣었다. 각 박스에는 '장수신토좌'에 접붙인 '슈퍼만촌'오이 23일 묘를 8월 1일 1포기씩 심고 11월까지 각 구당 오이 수확량을 조사하였다. 뿌리혹선충의 유충밀도와 수량과의 회귀식은 $Y=0.82-0.04{\cdot}Log_{10}$(Pi+1)로 방제 비용을 감안한 경제적 피해 허용 수준은 정식전 뿌리혹선충 유충의 밀도가 토양 $1,000cm^3$당 5마리이면 살선충제 입제 살포가 경제적이고, 유충의 밀도가 토양 $1,000cm^3$당 25마리 이상이면 훈증제를 처리하는 것도 고려해 볼 수 있다. 오이 시설재배시 뿌리혹선충의 피해를 방지하기 위해서는 최소한 정식 수개월 전에 미리 토양 선충 밀도를 조사해야 할 것이다.

Keywords

References

  1. Barker, K. R. 1982. Influence of soil moisture, cultivar, and population density of Meloidogyne incognita on soybean yield in plots. J. Nematol. 14: 429 (Abstr.)
  2. Barker, K. R. 1985. Nematode extraction and bioassays. In: An Advance Treatise on Meloidogyne. Vol. II. Methodology pp. 19-35. North Carolina State University. Raleigh, NC, USA
  3. Barker, K. R., Schmitt, D. O. and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. In: An Advance Treatise on Meloidogyne. Vol. I. Biology pp. 135-148. North Carolina State University. Raleigh, NC, USA
  4. Cho, M. R., Lee, B. C., Kim, D. S., Jeon, H. Y., Yiem, M. S. and Lee, J. O. 2000. Distribution of plant-parasitic nematodes in fruit vegetable production areas in Korea and identification of root-knot nematodes by enzyme phenotypes. Kor. J. Appl. Entomol. 39: 123-129
  5. Cooke, D. A. and Thomason, I. J. 1979. The relationship between population density of Heterodera schachtii, soil temperature, and sugarbeet yield. J. Nematol. 11: 124-128
  6. Ferris, H. 1978. Nematode economic thresholds: Derivation, requirements, and theoretical implications. J. Nematol. 10: 341-350
  7. Griffin, G. D. 1981. The relationship of plant age, soil temperature, and population density of Heterodera schachtii on the growth of sugarbeet. J. Nematol. 13: 184-190
  8. Heald, C. M. 1987. Classical nematode management practices. In: Vistas on nematology. Eds. by J. A. Veech and D. W. Dickson. pp. 100-105. Soc. of Nematol. Maryland. 509 pp
  9. Kim, D. G. 2001a. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Pathol. 7: 69-79
  10. Kim, D. G. 2001b. Distribution and population dynamics of Meloidogyne arenaria on oriental melon (Cucumis melo L.) under greenhouse conditions in Korea. Russian J. Nematol. 9: 61-68
  11. Kim, D. G. and Ferris, H. 2002. Relationship between crop losses and initial population densities of Meloidogyne arenaria. J. Nematol. 34: 43-49
  12. Kim, J. Y., Hong, S. S., Lee, J. G., Park, K. Y., Kim, H. G. and Kim, J. W. 2006. Detreminants of economic threshold for powdery mildew on cucumber. Res. Plant Pathol. 12: 231-234
  13. Yeon, I. K., Kim, D. G. and Park, S. D. 2003. Soil temperature and egg mass formation by Meloidogyne arenaria on oriental melon (Cucumis melo L.). Nematol. 5: 721-725 https://doi.org/10.1163/156854103322746896
  14. Mein, S., H., Wallace, R. and Fisher, J. M. 1978. Water relations of tomato (Lycopersicon esculentum Mill. cv. early Dwarf red) infected with Meloidogyne javanica (Treub) Chitwood. Physiol. Plant Pathol. 13: 275-281 https://doi.org/10.1016/0048-4059(78)90044-9
  15. Main, C. E. and Byrne, S. V. Eds. 1986. 1985 estimates of crop losses in North Carolina due to plant diseases and nematodes. Dept. of Plant Pathol. Special Publ. No. 5. North Carolina State University, Raleigh
  16. National Agricultural Products Quality management Service. 2008. http://www.naqs.go.kr/statisticsInfo/statisticsInfo_02_ 1_1.jsp
  17. Park, S. D., Kwon, T. Y., Jun, H. S. and Choi, B. S. 1995. The occurrence and severity of damage by root-knot nematode (Meloidogyne incognita) in controlled fruit vegetable field. Rural Dev. Admin., J. Crop Prot. 37: 318-323
  18. Roberts, P. A., Van Gundy, S. D. and McKinney, H. E. 1981. Effects of soil temperature and planting date of wheat on Meloidogyne incognita reproduction, soil populations, and grain yield. J. Nematol. 13: 338-345
  19. SAS. 1990. SAS/STAT User's guide. Version 6. SAS Institute Inc., Cary, NC
  20. Seoul Agricultural & Marine Products Corp. 2008. http://www. garak.co.kr/united/index.jsp
  21. Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. London: Her Majesty's Stationery Office
  22. 농촌진흥청. 2006. 2005소득자료 전국 2 (작목별경영비 및 소득). 92 pp

Cited by

  1. Control Effect of Sudan Grass on Root-Knot Nematode, Meloidogyne incognita, in Cucumber and Lettuce Greenhouses vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.264
  2. Evaluation of Disease Resistance of Cucurbit Cultivars to Powdery Mildew and Root-Knot Nematode vol.18, pp.1, 2012, https://doi.org/10.5423/RPD.2012.18.1.029
  3. Occurrence of Meloidogyne incognita Infecting Resistant Cultivars and Development of an Efficient Screening Method for Resistant Tomato to the Mi-virulent Nematode vol.32, pp.2, 2014, https://doi.org/10.7235/hort.2014.13129
  4. Development of Efficient Screening Methods for Resistant Cucumber Plants to Meloidogyne incognita vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.119
  5. Control of the Root-Knot Nematode (Meloidogyne spp.) on Cucumber by a Liquid Bio-Formulation Containing Chitinolytic Bacteria, Chitin and Their Products vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.112
  6. Control Effects of Imicyafos GR against Two Species of the Root-knot Nematodes (Meloidogyne incognita and Meloidogyne hapla) vol.19, pp.2, 2015, https://doi.org/10.7585/kjps.2015.19.2.101
  7. Control Effect of Coffee Ground Compost and Velvet bean Against Root-Knot Nematode, Meloidogyne incognita in Pumpkin vol.20, pp.1, 2016, https://doi.org/10.7585/kjps.2016.20.1.47
  8. Effect of Bacillus spp. Having Gelatin Decomposing Activity on Root-knot Nematode, Meloidogyne incognita on Pepper vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.375