DOI QR코드

DOI QR Code

Effects of Excretory/Secretory Products from Clonorchis sinensis and the Carcinogen Dimethylnitrosamine on the Proliferation and Cell Cycle Modulation of Human Epithelial HEK293T Cells

  • Kim, Eun-Min (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Kim, June-Sung (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Choi, Min-Ho (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Hong, Sung-Tae (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Bae, Young-Mee (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine)
  • Published : 2008.09.30

Abstract

Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.

Keywords

References

  1. Hong ST. Clonorchis sinensis. In: Miliotis MD, Bier JW(eds). International handbook of foodborn pathogens. Marcel Dekker, New York 2003: 581-592
  2. Choi MS, Choi DI, Choi MH, JI Z, LI, Z, Cho SY, Hong KS, Lim HJ, Hong ST. Correlation between sonographics findings and infection intensity in clonorchiasis. Am J Trop Med Hyg 2005; 73: 1139-1144
  3. Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg 2002; 89: 962-970 https://doi.org/10.1046/j.1365-2168.2002.02143.x
  4. Schwartz DA. Helminths in the induction of cancer: Opisthorchis viverrini, Clonorchis sinensis and cholangiocarcinoma. Trop Geogr Med 1980; 32: 95-100
  5. Prempracha N, Tengchaisri T, Chawengkirttikul R, Boonpucknavig S, Thamavit W, Duongchawee G, Sirisinha S. Identification and potential use of a soluble tumor antigen for the detection of liverfluke- associated cholangiocarcinoma induced in a hamster model. Int J Cancer 1994; 57: 691-695 https://doi.org/10.1002/ijc.2910570514
  6. Lee JH, Rim HJ, Bak UB. Effect of Clonorchis sinensis infection and dimethylnitrosamine administration on the induction of cholangiocarcinoma in Syrian golden hamsters. Korean J Parasitol 1993; 31: 21-30 https://doi.org/10.3347/kjp.1993.31.1.21
  7. Pinlaor S, Hiraku Y, Ma N, Yongvanit P, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S. Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammationmediated carcinogenesis. Nitric Oxide 2004; 11: 175-183 https://doi.org/10.1016/j.niox.2004.08.004
  8. Kato M, Popp JA, Conolly RB, Cattley RC. Relationship between hepatocyte necrosis, proliferation, and initiation induced by diethylnitrosamine in the male F344 rat. Fundam Appl Toxicol 1993; 20: 155-162 https://doi.org/10.1006/faat.1993.1021
  9. Pinlaor S, Hiraku Y, Yongvanit P, Tada-Oikawa S, Ma N, Pinlaor P, Sithithaworn P, Sripa B, Murata M, Oikawa S, Kawanishi S. iNOS-dependent DNA damage via NF-kappaB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel. Int J Cancer 2006; 119: 1067-1072 https://doi.org/10.1002/ijc.21893
  10. King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol 1998; 60: 601-617 https://doi.org/10.1146/annurev.physiol.60.1.601
  11. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424-429 https://doi.org/10.1126/science.1411535
  12. Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 2006; 66: 11897-11906 https://doi.org/10.1158/0008-5472.CAN-06-2497
  13. Dimova DK, Stevaux O, Frolov MV, Dyson NJ. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev 2003; 17: 2308-2320 https://doi.org/10.1101/gad.1116703
  14. Ahmad N, Gupta S, Mukhtar H. Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431. Oncogene 1999; 18: 1891-1896 https://doi.org/10.1038/sj.onc.1202493
  15. Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins JR. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 2001; 21: 4684-4699 https://doi.org/10.1128/MCB.21.14.4684-4699.2001
  16. Zhu W, Giangrande PH, Nevins JR. E2Fs link the control of G1/S and G2/M transcription. EMBO J 2004; 23: 4615-4626 https://doi.org/10.1038/sj.emboj.7600459
  17. Blake MC, Azizkhan JC. Transcription factor E2F1 is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol Cell Biol 1989; 9: 4994-5002 https://doi.org/10.1128/MCB.9.11.4994
  18. Fry CJ, Pearson A, Malinowski E, Bartley SM, Greenblatt J, Farnham PJ. Activation of the murine dihydrofolate reductase promoter by E2F1. J Biol Chem 1999; 274: 15883-15891 https://doi.org/10.1074/jbc.274.22.15883
  19. Sowers R, Toguchida J, Qin J, Meyers PA, Healey JH, Huvos A, Banerjee D, Bertino JR, Gorlick R. mRNA expression levels of E2F transcription factors correlated with dihydrofolate reductase, reduced folate carrier, and thymidylate synthase mRNA expression in osteosarcoma. Mol Cancer Ther 2003; 2: 535-541
  20. Johnson DG, Schneider-Broussard R. Role of E2F in cell cycle control and cancer. Front Biosci 1998; 3: d447-d448 https://doi.org/10.2741/A291
  21. Mundle SD, Saberwal G. Evolving intricacies and implications of E2F1 regulation. FASEB J 2003; 17: 569-574 https://doi.org/10.1096/fj.02-0431rev
  22. Kim YJ, Choi MH, Hong ST, Bae YM. Proliferative effects of excretory/ secretory products from Clonorchis sinensis on the human epithelial cell line HEK293 via regulation of the transcription factor E2F1. Parasitol Res 2008; 102: 411-417 https://doi.org/10.1007/s00436-007-0778-2
  23. Slansky JE, Farnham PJ. Transcriptional regulation of the dihydrofolate reductase gene. Bioessays 1996; 18: 55-62 https://doi.org/10.1002/bies.950180111
  24. Huang CL, Liu D, Nakano J, Yokomise H, Ueno M, Kadota K, Wada H. E2F1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin Cancer Res 2007; 13: 6938-6946 https://doi.org/10.1158/1078-0432.CCR-07-1539
  25. Li Z, Putzer BM. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of Cyclin E/CDK2 and G2/M checkpoint proteins. J Cell Mol Med "Postprint";10.1111/j.1582-4934.2008.00244x
  26. Satarug S, Haswell-Elkins MR, Sithithaworn P, Bartsch H, Ohshima H, Tsuda M, Mairiang P, Mairiang E, Yongvanit P, Esumi H, Elkins DB. Relationships between the synthesis of N-nitrosodimethylamine and immune responses to chronic infection with the carcinogenic parasite, Opisthorchis viverrini in men. Carcinogenesis 1998; 19: 485-491 https://doi.org/10.1093/carcin/19.3.485
  27. Rodriguez JL, Boukaba A, Sandoval J, Georgieva EI, Latasa MU, Garcia-Trevijano ER, Serviddio G, Nakamura T, Avila MA, Sastre J, Torres L, Mato JM, Lopez-Rodas G. Transcription of the MAT2A gene, coding for methionine adenosyltransferase, is up-regulated by E2F and Sp1 at a chromatin level during proliferation of liver cells. Int J Biochem Cell Biol 2007; 39: 842-850 https://doi.org/10.1016/j.biocel.2007.01.009
  28. Hou PC, Pang SC. Chorionepithelioma: an analytical study of 28 necropsied cases, with special reference to the possibility of spontaneous retrogression. J Pathol Bacteriol 1956; 72: 95-104 https://doi.org/10.1002/path.1700720113
  29. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, Pairojkul C, Bhudhisawasdi V, Tesana S, Thinkamrop B, Bethony JM, Loukas A, Brindley PJ. Liver fluke induces cholangiocarcinoma. PLos Med 2007; 4: e201 https://doi.org/10.1371/journal.pmed.0040201
  30. Hu XT. TGFbeta-mediated formation of pRb-E2F complexes in human myeloid leukemia cells. Biochem Biophys Res Commun 2008; 369: 277-280 https://doi.org/10.1016/j.bbrc.2008.02.051

Cited by

  1. Resistance of cholangiocarcinoma cells to parthenolide-induced apoptosis by the excretory-secretory products of Clonorchis sinensis vol.104, pp.5, 2009, https://doi.org/10.1007/s00436-008-1283-y
  2. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae vol.106, pp.1, 2009, https://doi.org/10.1007/s00436-009-1662-z
  3. Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini vol.4, pp.6, 2008, https://doi.org/10.1371/journal.pntd.0000719
  4. Progress on the transcriptomics of carcinogenic liver flukes of humans—Unique biological and biotechnological prospects vol.28, pp.6, 2010, https://doi.org/10.1016/j.biotechadv.2010.07.006
  5. Helminths in human carcinogenesis vol.305, pp.2, 2008, https://doi.org/10.1016/j.canlet.2010.07.008
  6. Parasites and malignancies, a review, with emphasis on digestive cancer induced by Cryptosporidium parvum (Alveolata: Apicomplexa) vol.19, pp.2, 2008, https://doi.org/10.1051/parasite/2012192101
  7. A single nucleotide polymorphism in EZH2 predicts overall survival rate in patients with cholangiocarcinoma vol.6, pp.5, 2013, https://doi.org/10.3892/ol.2013.1559
  8. Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory se vol.112, pp.3, 2008, https://doi.org/10.1007/s00436-012-3264-4
  9. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis vol.113, pp.9, 2008, https://doi.org/10.1007/s00436-014-4006-6
  10. Clonorchis sinensis excretory/secretory products promote the secretion of TNF-alpha in the mouse intrahepatic biliary epithelial cells via Toll-like receptor 4 vol.8, pp.1, 2015, https://doi.org/10.1186/s13071-015-1171-0
  11. Involvement of PSMD10, CDK4, and Tumor Suppressors in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodimethylamine vol.9, pp.8, 2015, https://doi.org/10.1371/journal.pntd.0004008
  12. The importance of wild fish in the epidemiology of Clonorchis sinensis in Vietnam vol.115, pp.9, 2008, https://doi.org/10.1007/s00436-016-5100-8
  13. Association of Fasciola hepatica Infection with Liver Fibrosis, Cirrhosis, and Cancer: A Systematic Review vol.10, pp.9, 2008, https://doi.org/10.1371/journal.pntd.0004962
  14. Clonorchis sinensis, an oriental liver fluke, as a human biological agent of cholangiocarcinoma: a brief review vol.49, pp.11, 2016, https://doi.org/10.5483/bmbrep.2016.49.11.109
  15. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control vol.5, pp.1, 2008, https://doi.org/10.1186/s40249-016-0166-1
  16. Expression of Clonorchis sinensis GIIIsPLA2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway vol.116, pp.4, 2008, https://doi.org/10.1007/s00436-017-5409-y
  17. Connexin 43 plays an important role in the transformation of cholangiocytes with Clonochis sinensis excretory-secretory protein and N -nitrosodimethylamine vol.13, pp.4, 2019, https://doi.org/10.1371/journal.pntd.0006843
  18. Non-Viral Parasites Associated with Carcinogenesis vol.37, pp.9, 2019, https://doi.org/10.1080/07357907.2019.1662918
  19. Identification of Myoferlin, a Potential Serodiagnostic Antigen of Clonorchiasis, via Immunoproteomic Analysis of Sera From Different Infection Periods and Excretory-Secretory Products of Clonorchis s vol.11, pp.None, 2021, https://doi.org/10.3389/fcimb.2021.779259
  20. The Overactivation of NADPH Oxidase during Clonorchis sinensis Infection and the Exposure to N -Nitroso Compounds Promote Periductal Fibrosis vol.10, pp.6, 2021, https://doi.org/10.3390/antiox10060869
  21. Novel mechanism of hepatobiliary system damage and immunoglobulin G4 elevation caused by Clonorchis sinensis infection vol.9, pp.23, 2008, https://doi.org/10.12998/wjcc.v9.i23.6639