DOI QR코드

DOI QR Code

Elemental Image Synthesis for Integral Imaging Using Phase-shifting Digital Holography

  • Jeong, Min-Ok (School of Electrical & Computer Engineering, Chungbuk National University) ;
  • Kim, Nam (School of Electrical & Computer Engineering, Chungbuk National University) ;
  • Park, Jae-Hyeung (School of Electrical & Computer Engineering, Chungbuk National University)
  • Received : 2008.10.08
  • Accepted : 2008.12.03
  • Published : 2008.12.25

Abstract

We propose a method generating elemental images for the integral imaging using 4-step phaseshifting digital holography. Phase shifting digital holography is a way recording the digital hologram by changing the phase of the reference beam and extracting the complex field of the object beam. Since all 3D information is captured by phase-shifting digital holography, the elemental images for any specifications of the lens array can be generated from single phase-shifting digital holography. In experiment, phase-shifting is achieved by rotating half- and quarter- wave plates and the resultant interference patterns are captured by a $3272{\times}2469$ pixel CCD camera with $27{\mu}m{\times}27{\mu}m$ pixel size.

Keywords

References

  1. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett., vol. 22, no.16, pp. 1268-1270, 1997 https://doi.org/10.1364/OL.22.001268
  2. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett., vol. 27, no. 13, pp. 1108-1110, 2002 https://doi.org/10.1364/OL.27.001108
  3. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt., vol. 33, no.2, pp. 179-181, 1994 https://doi.org/10.1364/AO.33.000179
  4. J. W. Kang and C. K. Hong, “Three Dimensional Shape Measurement of a Micro Fresnel Lens with In-line Phaseshifting Digital Holographic Microscopy,” J. Opt. Soc. Korea, vol. 10, no. 4, pp. 178-183, 2006 https://doi.org/10.3807/JOSK.2006.10.4.178
  5. H. J. Lee and S. K. Gil, “Error Analysis for Optical Security by means of 4-StepPhase-Shifting Digital Holography,” J. Opt. Soc. Korea, vol. 10, no. 3, pp. 118-123, 2006 https://doi.org/10.3807/JOSK.2006.10.3.118
  6. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt., vol. 36, no.7, pp. 1598-1603, 1997 https://doi.org/10.1364/AO.36.001598
  7. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A, vol. 18, no. 8, pp. 1814-1821, 2001 https://doi.org/10.1364/JOSAA.18.001814
  8. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Exp., vol. 12, no.24, pp. 6020-6032, 2004 https://doi.org/10.1364/OPEX.12.006020
  9. S.-H. Shin and B. Javidi, “Speckle reduced threedimensional volume holographic display using integral imaging,” Appl. Opt., vol. 41, no.14, pp. 2644–2649, 2002 https://doi.org/10.1364/AO.41.002644
  10. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Exp., vol. 12, no. 3, pp. 421-429, 2004 https://doi.org/10.1364/OPEX.12.000421
  11. M. Martijnez-Corral, B. Javidi, R. Martijnez-Cuenca, and G. Saavedra, “Integral Imaging with Improved Depth of Field by Use of Amplitude-Modulated Microlens Arrays,” Appl. Opt., vol. 43 no. 31, pp. 5806-5813, 2004 https://doi.org/10.1364/AO.43.005806
  12. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt., vol. 45, no. 18, pp. 4334-4343, 2006 https://doi.org/10.1364/AO.45.004334
  13. J.-S. Jang and B. Javidi, “Improvement of Viewing Angle in Integral Imaging by Use of Moving Lenslet Arrays with Low Fill Factor,” Appl. Opt., vol. 42, no. 11, pp. 1996-2002, 2003 https://doi.org/10.1364/AO.42.001996
  14. D.-H. Shin and E.-S. Kim, “Computational Integral Imaging Reconstruction of 3D Object Using a Depth Conversion Technique,” J. Opt. Soc. Korea, vol. 12, no. 3, pp. 131-135, 2008 https://doi.org/10.3807/JOSK.2008.12.3.131
  15. B. Javidi and S.-H. Hong, “Three-Dimensional Holographic Image Sensing and Integral Imaging Display,” Journal of Display Technology, vol. 1, no. 2, pp. 341-346, 2005 https://doi.org/10.1109/JDT.2005.858871
  16. S.-C. Kim, P. Sukhbat, and E.-S. Kim, “Generation of three-dimensional integral images from a holographic pattern of 3-D objects,” Appl. Opt., vol. 47, no. 21, pp. 3901-3908, 2008 https://doi.org/10.1364/AO.47.003901
  17. T. Tajahuerce, O. Matoba, S. Verral, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry”, Appl. Opt., vol. 39, no.14, pp. 2313-2320, 2000 https://doi.org/10.1364/AO.39.002313
  18. T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer Science+Business Media, Inc., New York, USA, 2006) Chapter 5
  19. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, USA, 1996) Chapter 5
  20. T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt., vol. 47, D136-D143, 2008 https://doi.org/10.1364/AO.47.00D136
  21. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt., vol. 47, D71-D79, 2008 https://doi.org/10.1364/AO.47.000D71

Cited by

  1. Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.383
  2. 2-step Phase-shifting Digital Holographic Optical Encryption and Error Analysis vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.244
  3. Elimination of image discontinuity in integral floating display by using adaptive image mapping vol.48, pp.34, 2009, https://doi.org/10.1364/AO.48.00H176
  4. Super-Resolution Digital Holographic Microscopy for Three Dimensional Sample Using Multipoint Light Source Illumination vol.50, pp.9, 2011, https://doi.org/10.1143/JJAP.50.092503
  5. Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.263
  6. Multi-viewer tracking integral imaging system and its viewing zone analysis vol.17, pp.20, 2009, https://doi.org/10.1364/OE.17.017895
  7. 3D/2D convertible projection-type integral imaging using concave half mirror array vol.18, pp.20, 2010, https://doi.org/10.1364/OE.18.020628
  8. 2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.354
  9. Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.245
  10. Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT vol.14, pp.3, 2010, https://doi.org/10.3807/JOSK.2010.14.3.240
  11. Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.495
  12. Tilt Aberration Compensation Using Interference Patterns in Digital Holography vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.451
  13. Determining the refractive index distribution of optical components by dual-wavelength digital holographic microscopy with a liquid vol.67, pp.4, 2015, https://doi.org/10.3938/jkps.67.634
  14. QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.097
  15. Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays vol.17, pp.8, 2009, https://doi.org/10.1364/OE.17.006389
  16. Dual-wavelength Digital Holography Microscope for BGA Measurement Using Partial Coherence Sources vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.352
  17. Super-Resolution Digital Holographic Microscopy for Three Dimensional Sample Using Multipoint Light Source Illumination vol.50, pp.9R, 2011, https://doi.org/10.7567/JJAP.50.092503
  18. Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array vol.48, pp.11, 2009, https://doi.org/10.1364/AO.48.002178
  19. Three-dimensional Information and Refractive Index Measurement Using a Dual-wavelength Digital Holographic vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.173
  20. Intermediate Holographic Data Storage System by Using Sequentially Superimposed Recording vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.456