Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

나노의학: 나노물질을 이용한 약물전달시스템과 나노입자의 표적화

  • Youn, Hye-Won (Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kang, Keon-Wook (Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 윤혜원 (서울대학교 의학연구원 방사선 의학연구소, 서울대학교 의과대학 핵의학교실) ;
  • 강건욱 (서울대학교 의학연구원 방사선 의학연구소, 서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의학연구원 방사선 의학연구소, 서울대학교 의과대학 핵의학교실) ;
  • 이동수 (서울대학교 의학연구원 방사선 의학연구소, 서울대학교 의과대학 핵의학교실)
  • Published : 2008.10.31

Abstract

Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development.

Keywords

References

  1. Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2003:2:215-21
  2. NEKTAR Therapeutics Co. Polyethylene glycol and derivatives for advanced PEGylation. Catalogue 2005-2006 Nektar Advanced PEGylation
  3. Veronese FM, Harris JM. Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 2002:54:453-6 https://doi.org/10.1016/S0169-409X(02)00020-0
  4. Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE et al. Rational Design of a Potent, Long-Lasting Form of Interferon: A 40 kDa Branched Polyethylene Glycol- Conjugated Interferon-2a for the Treatment of Hepatitis C. Bioconjug Chem 2001:12:195-202 https://doi.org/10.1021/bc000082g
  5. Ng EW, Shima DT, Calias P, Cunningham Jr. ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006:5:123-32 https://doi.org/10.1038/nrd1955
  6. Cheng TL, Wu PY, Wu MF, Chern JW, Roffler SR. Accelerated clearance of polyethylene glycol-modified proteins by antipolyethylene glycol IgM. Bioconjug Chem 1999:10:520-8 https://doi.org/10.1021/bc980143z
  7. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van Der Meer JW et al. Accelerated Blood Clearance and Altered Biodistribution of Repeated Injections of Sterically Stabilized Liposomes. J Pharmacol Exp Ther 2000:292:1071-9
  8. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 2003:55:1261-77 https://doi.org/10.1016/S0169-409X(03)00108-X
  9. Mahesh C. Polylactides/Glycolides-Excipients for Injectable Drug. Drug Del Tech 2002:2:21
  10. Johnson OL, Cleland JL, Lee HJ, Charnis M, Duenas E, Jaworowicz W et al. A month−long effect from a single injection of microencapsulated human growth hormone. Nat Med 1996:2:795-9 https://doi.org/10.1038/nm0796-795
  11. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Targeting 2008:16:108-23 https://doi.org/10.1080/10611860701794353
  12. Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly (epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005:293:261-70 https://doi.org/10.1016/j.ijpharm.2004.12.010
  13. Devalapally H, Duan Z, Seiden MV, Amiji MM. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 2007:121:1830-80
  14. Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 1998:15:513-55
  15. Motokawa K, Hahn SK, Nakamura T, Miyamoto H, Shimoboji T. Selectively crosslinked hyaluronic acid hydrogels for. sustained release formulation of erythropoietin. J Biomed Mat Res 2006:78A:459-65 https://doi.org/10.1002/jbm.a.30759
  16. Oh EJ, Kang SW, Kim BS, Jiang G, Cho IH, Hahn SK. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J Biomed Mater Res A 2008:86:685-93
  17. Luo Y, Prestwich GD. Synthesis and Selective Cytotoxicity of a Hyaluronic Acid-Antitumor Bioconjugate. Bioconj Chem 1999: 10:755-63 https://doi.org/10.1021/bc9900338
  18. Pusateri, AE., McCarthy SJ, Gregory KW, Harris RA, Cardenas L, McManus LT et al. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. Journal of Trauma 2003:4:177-82
  19. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 2003:103:643-653 https://doi.org/10.1016/j.jconrel.2005.01.001
  20. Dodane V, Vivivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1998:1:246-253 https://doi.org/10.1016/S1461-5347(98)00059-5
  21. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998:15:1326-31 https://doi.org/10.1023/A:1011929016601
  22. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 2003:250:215-26 https://doi.org/10.1016/S0378-5173(02)00548-3
  23. Qi LF, Xu ZR, Li Y, Jiang X, Han XY. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 2005:11:5136-41
  24. Qi L, Xu Z, Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur J Cancer 2007:43:184-93 https://doi.org/10.1016/j.ejca.2006.08.029
  25. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006:5:1909-17 https://doi.org/10.1158/1535-7163.MCT-06-0141
  26. Stinchcombe TE, Socinski MA, Walko CM, O'Neil BH, Collichio FA, Ivanova A et al. Goldberg RM, Lindley C, Claire Dees E..Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (abraxane(R)) on three treatment schedules in patients with solid tumors. Cancer Chemother Pharmacol 2007:60:759-66 https://doi.org/10.1007/s00280-007-0423-x
  27. Brahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 2002:8:1038-44
  28. Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 2007:341:207-14 https://doi.org/10.1016/j.ijpharm.2007.03.036
  29. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997:54:15-21
  30. Hussein MA, Wood L, Hsi E, et al. A phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 2002:95:2160-8 https://doi.org/10.1002/cncr.10946
  31. Rifkin RM, Gregory SA, Mohrbacher A. Pegylated liposomal doxorubicin, vincristine, and dexamethasone provide significant reduction in toxicity compared with doxorubicin, vincristine, and dexamethasone in patients with newly diagnosed multiple myeloma: a phase III multicenter randomized trial. Cancer 2006: 106:848-58 https://doi.org/10.1002/cncr.21662
  32. Hussein MA, Wood L, Hsi E, Srkalovic G, Karam M, Elson P et al. A Phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 2002:95: 2160-8 https://doi.org/10.1002/cncr.10946
  33. Vlugt-Wensink KD, Jiang X, Schotman G, Kruijtzer G, Vredenberg A, Chung JT et al. In vitro degradation behavior of microspheres base don cross-linked dextran. Biomacromol 2006: 7:2983-90 https://doi.org/10.1021/bm060385z
  34. Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science 2004:303:1818-22 https://doi.org/10.1126/science.1095833
  35. Prescott JH, Lipka S, Samuel Baldwin, Sheppard Jr NF, Maloney JM, Coppeta J et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006:24:437-8 https://doi.org/10.1038/nbt1199
  36. Duros Technology Platform. http://www.durect.com/pdf/duros_ fact_sheet2001.pdf. Accessed Oct. 2008
  37. Staples M, Daniel K, Cima MJ, Langer R. Pharmaceutical Research 2006:23:847-863 https://doi.org/10.1007/s11095-006-9906-4
  38. Brent G. http://www.hpl.hp.com/news/2008/jan-mar/skin_patch. html. Accessed Oct. 2008
  39. Kwon SY. In Vitro Evaluation of Transdermal Drug Delivery by a Micro-needle Patch. Controlled Release Society 31st Annual Meeting, TRANSACTIONS 2004, Abstract #115
  40. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discovery 2008:7:771-82 https://doi.org/10.1038/nrd2614
  41. Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science 2004:303:1818-22 https://doi.org/10.1126/science.1095833
  42. Hashida M. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res 1998:15:128-32 https://doi.org/10.1023/A:1011921324952
  43. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting 2008:16:108-23 https://doi.org/10.1080/10611860701794353
  44. Banks WA, Kastin AJ. Characterization of lectin-mediated brain uptake of HIV-1 GP120. J Neurosci Res 1998:54:522-9 https://doi.org/10.1002/(SICI)1097-4547(19981115)54:4<522::AID-JNR9>3.0.CO;2-O
  45. Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: Implications for drug delivery. Eur J Pharm Biopharm 2001:52:1-11 https://doi.org/10.1016/S0939-6411(01)00159-X
  46. Mo Y, Lim LY. Preparation and in vitro anticancer activity of WGA-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 2005:107:30-42 https://doi.org/10.1016/j.jconrel.2004.06.024
  47. Jeong YI, Seo SJ, Park IK, Lee HC, Kang IC, Akaike T et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005:296:151-61 https://doi.org/10.1016/j.ijpharm.2005.02.027
  48. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005:4:363-74 https://doi.org/10.1177/153303460500400405
  49. Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006:121:159-76 https://doi.org/10.1016/j.clim.2006.06.006
  50. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006:121:144-58 https://doi.org/10.1016/j.clim.2006.06.010
  51. Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 2005:288:361-8 https://doi.org/10.1016/j.ijpharm.2004.10.009
  52. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002:54:675- 93 https://doi.org/10.1016/S0169-409X(02)00042-X
  53. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005:4:363-74 https://doi.org/10.1177/153303460500400405
  54. Zhang Z, Huey LS, Feng SS. Folate-decorated poly(lactidecoglycolide)- vitamin E TPGS NPs for targeted drug delivery. Biomaterials 2007:28:1889-99 https://doi.org/10.1016/j.biomaterials.2006.12.018
  55. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004:10:415-27 https://doi.org/10.1158/1078-0432.CCR-0642-03
  56. Weiner LM. Fully human therapeutic monoclonal antibodies. J Immunother 2006:29:1-9 https://doi.org/10.1097/01.cji.0000192105.24583.83
  57. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006:66: 6732-40 https://doi.org/10.1158/0008-5472.CAN-05-4199
  58. Burgstaller P, Jenne A, Blind M. 2002. Aptamers and aptazymes: Accelerating small molecule drug discovery. Curr Opin Drug Discov Devel 5:690-700
  59. Pestourie C, Tavitian B, Duconge F. 2005. Aptamers against extracellular targets for in vivo applications. Biochimie 87:921- 30 https://doi.org/10.1016/j.biochi.2005.04.013
  60. Hicke BJ, Stephens AW. Escort aptamers: A delivery service for diagnosis and therapy. J Clin Invest 2000:106:923-8 https://doi.org/10.1172/JCI11324
  61. Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006:3:311-24 https://doi.org/10.1517/17425247.3.3.311
  62. Moghimi SM, Hunter AC, Murray JC. Long- circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001:53:283-318
  63. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003:8:1112-20 https://doi.org/10.1016/S1359-6446(03)02903-9
  64. Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007:3:1840-54 https://doi.org/10.1002/smll.200700351
  65. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med. 2008:49 Suppl 2:113S-28S https://doi.org/10.2967/jnumed.107.045922
  66. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissues. Adv Drug Deliv Rev 2004:55:329-47 https://doi.org/10.1016/S0169-409X(02)00228-4
  67. Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release 2004:94:411-22 https://doi.org/10.1016/j.jconrel.2003.10.018
  68. Lukyanov AN, Gao ZG, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 2003:91:97-102 https://doi.org/10.1016/S0168-3659(03)00217-7
  69. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004:303:1818-1822 https://doi.org/10.1126/science.1095833
  70. Moghimi SM, Hunter AC, Murray JC. Long- circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001:53:283-31
  71. Biancco, A. Carbon nanotubes for the delivery of therapeutic molecules. Exp. Opin. Drug Deliv 2004:1:57-65 https://doi.org/10.1517/17425247.1.1.57
  72. Lopez CF, Nielsen SO, Moore PB, Klein ML. Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA 2004:101:4431-4
  73. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biol Med 2004:37:1191-202 https://doi.org/10.1016/j.freeradbiomed.2004.07.002
  74. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 2003:278:50212-6 https://doi.org/10.1074/jbc.M310216200
  75. Tomalia DA, Frechet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym SciPart A: Polym Chem 2002:40:2719-28 https://doi.org/10.1002/pola.10301
  76. Haag R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed Engl 2004:43:278-82 https://doi.org/10.1002/anie.200301694
  77. Rosa BA, Schengrund CL. Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 2005:5:247-54 https://doi.org/10.2174/1568005054880127
  78. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007:18:1391-6 https://doi.org/10.1021/bc060367e
  79. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007:7: 3065-70 https://doi.org/10.1021/nl071546n
  80. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, et al. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 2004:48:985-94 https://doi.org/10.1111/j.1348-0421.2004.tb03621.x
  81. Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 2005:102:7583-8
  82. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004:22:969-76 https://doi.org/10.1038/nbt994
  83. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004:4:11-8 https://doi.org/10.1021/nl0347334
  84. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007:23:1974-80 https://doi.org/10.1021/la060093j
  85. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 2005: 121-3
  86. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 2007:5:1-5 https://doi.org/10.1186/1477-3155-5-1
  87. Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005:12:1227-34 https://doi.org/10.1016/j.chembiol.2005.09.008
  88. Zhu MQ, Han JJ, Li AD. CdSe/CdS/SiO2 core/shell/shell nanoparticles. J Nanosci Nanotechnol 2007:7:2343-8 https://doi.org/10.1166/jnn.2007.438
  89. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 2007: 129:7661-5 https://doi.org/10.1021/ja071471p
  90. Edwards EW, Chanana M, Wabg DY, Mohwald H. Stimuliresponsive transport of nanoparticles across water-oil interfaces. Angew Chem Int Ed Engl 2008:47:320-3 https://doi.org/10.1002/anie.200702597
  91. Esenturk EN, Walker AR Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectroscopy 2008: Sep:Epub ahead of print
  92. Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chem Bio Chem 2004:5:275-9 https://doi.org/10.1002/cbic.200300713
  93. Jaffer FA, Weissleder R. Seeing within—molecular imaging of the cardiovascular system. Circ Res 2004:94:433-45 https://doi.org/10.1161/01.RES.0000119321.18573.5A
  94. Perez, JM, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem Bio Chem 2004:5:261-4 https://doi.org/10.1002/cbic.200300730
  95. Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K et al. MR Tracking of Transplanted Cells With 'Positive Contrast' Using Manganese Oxide Nanoparticles. Magnetic Resonance in Medicine 2008:60:1-7 https://doi.org/10.1002/mrm.21622
  96. Cheon J, Lee JH. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Acc Chem Res 2008 Aug:Epub ahead of print