Numerical Experiment for the Estimation of Equivalent Resistance Coefficient for the Simulation of Inundation over Densely Populated Structures

구조물 밀집지역 범람수치모의를 위한 상당저항계수 산정 수치실험

  • 김형석 (한양대학교 대학원 토목공학과) ;
  • 최준우 (한양대학교 대학원 토목공학과) ;
  • 고광오 (한양대학교 대학원 토목공학과) ;
  • 윤성범 (한양대학교 토목환경공학과)
  • Published : 2008.12.31

Abstract

Kwon et al.(2008) carried out a hydraulic experiment in order to evaluate Manning coefficient, which implicates flow resistance due to bottom friction as well as drag caused by the squared piers higher than water depth and arranged with equal intervals, under the flow condition with a constant drag coefficient, $Re>10^4$. And, based on the equation of equilibrium, they proposed a formula for the equivalent resistant coefficient including empirical drag interaction coefficient obtained by using the experimental results. In this study, the hydraulic experiment was simulated using FLOW-3D, a 3-dimensional computational fluid dynamic code. The computations were compared with the experiment results as well as the semi-theoretical formula, and the comparisons show a good agreement. From the agreement, it was confirmed that when flow resistance bodies were higher than water depth, Manning n value increases with 2/3 power of water depth as shown in the theoretical formula and that drag interaction coefficient was dominated by their intervals.

권 등(2008)은 수면보다 높은 사각기둥 저항체를 등간격으로 배치하고 항력계수가 일정한 값을 갖는 흐름조건$(Re>10^4)$에서 수리실험을 수행하여 바닥마찰과 형상저항에 의한 흐름저항을 나타내는 상당저항계수로서의 Manning계수 값을 산정하였다. 그리고 힘의 평형방정식으로부터 유도된 이론식에 실험결과를 사용하여 얻어진 경험적 항력상호작용계수를 도입하여 얻은 상당저항계수 식을 제안하였다. 본 연구에서는 이 수리실험을 3차원 전산유체해석 프로그램인 FLOW-3D를 사용하여 수치모의하고 그 결과를 실험결과 및 상당저항계수 식과 비교하여, 그값들이 매우 잘 일치하는 것을 보였다. 이로부터 이론식에 나타나 있는 것처럼 수면보다 높은 저항체가 존재할때 Manning계수가 수심의 2/3승으로 증가한다는 것과 항력상호작용계수가 이격거리의 지배적 영향을 받고 있음을 확인할 수 있었다.

Keywords

References

  1. 권갑근, 최준우, 윤성범 (2008). 개수로 다열기둥에 대한 상당저항계수 측정. 대한토목학회 논문집, 인쇄중
  2. Fathi-Maghadam, M. and Kouwen, N. (1997). Nonrigid, Nonsubmerged, Vegetative Roughness on Floodplains. J. of Hydraulic Engineering, ASCE, Vol. 123, 51-57 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51)
  3. Flow Science, Inc. (2000). FLOW-3D User Manual
  4. Murakami, S., and Mochida, A. (1995). On Turbulent Vortex Shedding Flow Past 2D Square Cylinder Predicted by CFD, J. Wind Eng. Ind. Aerodyn., 54, 191 https://doi.org/10.1016/0167-6105(94)00043-D
  5. Musleh, F. A. and Cruise, J. F. (2006). Functional Relationships of Resistance in Wide Flood Plains with Rigid Unsubmerged Vegetation. J. of Hydraulic Engineering, ASCE, 132, 163-171 https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(163)
  6. Petryk, S. and Bosmajian, G. (1975). Analysis of Flow through Vegetation. J. of Hydraulic Engineering, ASCE, 101, 871-884
  7. Sohankar, A., Davidson, L. and Norberg, C. (2000). Large Eddy Simulation of Flow Past a Square Cylinder: Comparison of Different Subgrid Scale Models. Journal of Fluids Engineering, 122, 39-47 https://doi.org/10.1115/1.483224
  8. White F. M. (1994). Fluid Mechanics. 3rd Edition. McGRAWHILL, INC
  9. Wienken, W., Stiller, J. and Keller, A. (2006). A Method to Predict Cavitation Inception Using Large-Eddy Simulation and its Application to the Flow Past a Square Cylinder, Journal of Fluids Engineering, 128, 316-325 https://doi.org/10.1115/1.2170132