Antioxidant and Antiviral Activities of Polyphenolics in Plum Wine

자두와인 내 폴리페놀 화합물의 항산화 및 항바이러스 활성

  • Kang, Byung-Tae (Department of Hotel Culinary Art & Baking Technology, Gimcheon College) ;
  • Kwon, Dur-Han (Natural Medicines Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Choi, Wha-Jung (Natural Medicines Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Kim, Soon-Hee (Department of Hotel Culinary Art & Baking Technology, Gimcheon College) ;
  • Park, Dong-Cheol (Department of Hotel Culinary Art & Baking Technology, Gimcheon College)
  • 강병태 (김천대학 호텔조리제빵과) ;
  • 권두한 (한국생명공학연구원 천연물의약연구센터) ;
  • 최화정 (한국생명공학연구원 천연물의약연구센터) ;
  • 김순희 (김천대학 호텔조리제빵과) ;
  • 박동철 (김천대학 호텔조리제빵과)
  • Published : 2008.12.31

Abstract

Total phenolics and flavonoids, and the antioxidant capacity of plum cultivar wines (Prunus salicina L. cv. Soldam and P. salicina L. cv. Formosa) were determined using spectrophotometric methods. The total phenolic and flavanoid contents of Soldam wine were $478.4\;{\pm}\;5.6\;mg$ GAE and $202.4\;{\pm}\;7.5\;mg$ CE per L,respectively, and in Formosa wine were $200.6\;{\pm}\;7.5\;mg$ GAE and $64.4\;{\pm}\;6.8\;mg$ CE per L, respectively. Neutral and acidic phenolics in Soldam wine were extracted with ethyl acetate and 0.01 N HCl, respectively. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay, neutral phenolics (64.5 EDA%) had $3{\sim}4$ times higher antioxidant activity than acidic phenolics (21.5 EDA%) and other related phenolic compounds such as chlorogenic acid (15.5 EDA%) and quercetin (24.6 EDA%) at a concentration of $100\;{\mu}g/mL$. The antiviral activities of neutral and acidic phenolics in Soldam wine were investigated in vitro using a virus-induced cytopathic effect (CPE) inhibition assay. Results showed that neutral and acidic phenolics at concentrations of $100\;{\mu}g/mL$ inhibited porcine epidemic diarrhea virus (PEDV) replication at rates of 78.12% and 58.37%, respectively. The inhibition rate of 10 g/mL neutral phenolics (69.42%) was higher than that of ribavirin as an antiviral reagent (57.86%). At concentrations of $100\;{\mu}g/mL$ or less, neutral and acidic phenolics of Soldam wine had no cytotoxic effect against vero cells.

피자두와 후무사로 만든 자두와인 내 총 페놀화합물과 플라보노이드 함량을 비교분석한 결과, 총 페놀화합물은 피자두 와인 ($478.4{\pm}5.6\;mg/L$)이 후무사 와인 ($200.6{\pm}7.5\;mg/L$)보다 2배, 플라보노이드 함량은 피자두 와인 ($202.4{\pm}7.5\;mg/L$)이 후무사 와인 ($64.4{\pm}6.8\;mg/L$)보다 3배 이상 많았다. 자두와인 자체의 항산화 효과를 DPPH 전자공여능으로 비교분석하였을 때 정제된 페놀화합물보다 그 활성이 크게 낮았으나, ethyl acetate로 추출한 중성 페놀화합물과 산성 페놀화합물의 항산화 활성은 mg/mL의 농도에서 정제된 페놀화합물과 비슷하게 나타났다. 특히, 중성페놀화합물의 경우, $100{\mu}g/mL$의 농도에서 64.5%의 전자공여능을 나타내었는데 이는 동일 농도의 정제된 페놀화합물(chlorogenic acid 15.5%, quercetin 24.6%)의 활성보다 3배 이상 높은 값이었다. vero cell에 돼지설사바이러스(PEDV)를 감염시켜 페놀화합물의 항바이러스 활성을 분석한 결과 중성 페놀화합물이 저농도 ($10\;{\mu}g/mL$이하)에서 상용 항바이러스제인 ribavirin보다 세포독성효과 (CPE)를 더 억제시키는 것으로 나타났다. 두 종류의 페놀화합물간에는 중성 페놀화합물이 산성 페놀화합물에 비해 최대 1.5배 정도 더 높은 항바이러스 활성을 보여주었다. 그러나, 고농도 ($100\;{\mu}g/mL$)에서는 ribavirin이 페놀화합물보다 높은 활성을 나타내었다. 정상세포에 대한 세포독성은 모든 실험군에서 나타나지 않아 페놀화합물의 항바이러스 활성이 바이러스 특이적인 효과임을 알 수 있었다.

Keywords

References

  1. Kim, D.O., Chun, O.K., Kim, Y.J., Moon, H.Y., and Lee, C.Y. (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509-6515 https://doi.org/10.1021/jf0343074
  2. Kim, D.O., Jeong, S.W., and Lee, C.Y. (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plum. Food Chemistry, 81, 321-326 https://doi.org/10.1016/S0308-8146(02)00423-5
  3. Cao, Y., and Cao, R. (1999) Angiogenesis inhibited by drinking tea. Nature, 398, 381 https://doi.org/10.1038/18793
  4. Eberhardt, M.V., Lee, C.Y., and Liu, R. H. (2000) Antioxidant activity of fresh apples. Nature, 405, 903-904
  5. Ito, A., Shamon, L.A., Yu, B., Mata-Greenwood, E., Lee, S.K., van Breemen, R.B., Mehta, R.G., Farnsworth, N.R., Fong, H.H.S., Pezzuto, J.M., and Kinghorn, A.D. (1998) Antimutagenic constituents of Casimiroa edulis with potential cancer chemopreventive activity. J. Agric. Food Chem., 46, 3509-3516 https://doi.org/10.1021/jf9802373
  6. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., and Yano, M. (1999) Antiproliferative effects of the readily extractable fractions prepared from various Citrus juices on several cancer cell lines. J. Agric. Food Chem., 47, 2509-2512 https://doi.org/10.1021/jf9812228
  7. Kim, M.Y., Choi, S.W., and Chung, S.K. (2000) Antioxidative flavonoids from the garlic (Allium sativum L.) shoot. Food Sci. Biotechnol., 9, 199-203
  8. Cook, N.C., and Samman, S.(1996) Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. 1996, J. Nutr. Biochem., 7, 66-76 https://doi.org/10.1016/0955-2863(95)00168-9
  9. Knekt, P., Jarvinen, R., Reunanen, A., and Maatela, J. (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. Br. Med. J. 312, 478-481 https://doi.org/10.1136/bmj.312.7029.478
  10. 하동욱, 김천시 농업기술센터
  11. Raynal, J., Moutounet, M., and Souquet, J.M. (1989) Intervention of phenolic compounds in plum technology. 1. changes during drying. J. Agric. Food Chem., 37, 1046-1050 https://doi.org/10.1021/jf00088a050
  12. Donovan, J.L., Meyer, A.S., and Waterhouse, A.L. (1998) Phenolic composition and antioxidant activity of prunes and prune juice(Prunus domestica). J. Agric. Food Chem., 46, 1247-1252 https://doi.org/10.1021/jf970831x
  13. Wang, H., Cao, G., and Prior, R.L. (1996) Total antioxidant capacity of fruits. J. Agric. Food Chem., 44, 701-705 https://doi.org/10.1021/jf950579y
  14. 윤옥현, 강병태, 이재우, 한만덕, 최영훈. (2005) 자두주생성균주 사카로마이세스속 케이씨에스 7 및 이를 이용한 자두주의 제조방법. 특허 제 0483228호
  15. Singleton, V., and Rossi, J.A.Jr. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144-158
  16. Zhishen, J., Mengcheng, T., and Jianming, W. (1999) The determination of flavonoid contents in mulberry and their csavenging effects on superoxide radicals. Food Chem., 64, 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  17. Jaworski, A.W., and Lee, C.Y. (1987) Fractionation and HPLC determination of grape phenolics. J. Agric. Food Chem., 35, 249-251
  18. Blois, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  19. Choi H.J., Kim J.H., Lee C.H., Ahn Y.J., Song J.H., Baek S.H., and Kwon D.H. (2009) Antiviral activity of quercetin 7-rhamnoside against porcinr epidemic diarrhea virus , Antiviral Res., 81, 77-81 https://doi.org/10.1016/j.antiviral.2008.10.002
  20. Antonio, P., Alessandra, D.C., and Giampaola, C. (2003) From plum to prunes: influence of drying parameters on polyphenols and antioxidant activity. J. Agric. Chem., 51, 3675-3681 https://doi.org/10.1021/jf021207+
  21. Tomas-Barberan, F.A., Gil, M.I., Creme, P., Waterhouse, A.L., Hess-Pierce, B., and Kader, A.A. (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plum. J. Agric. Food Chem., 49, 4748-4760 https://doi.org/10.1021/jf0104681
  22. Chun, O.K., Kim, D.O., and Lee, C.Y. (2003) Superoxide radical scavenging activity of major polyphenols in fresh plums. J. Agric. Food Chem., 51, 8067-8072 https://doi.org/10.1021/jf034740d
  23. Smith, R.A., and Kirkpatrick, W. (1980). "Ribavirin: structure and antiviral activity relationships", Ribavirin: A Broad Spectrum Antiviral Agent. New York: Academic Press, 1-21
  24. Knox, Y.M., Hayashi, K., Suzutani, T., Ogasawara, M., Yoshida, I., Shiina, R., Tsukui, A., Terahara, N., and Azuma, M. (2001) Activity of anthocyanins from fruit extract of Ribes nigrum L. against influenza A and B viruses. Acta Virol., 45, 209-215
  25. Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G., Diamantoglou, S., and Taimir-Riahi, H.A. (2005) DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J. Biomol. Struct. Dyn., 22, 719-724 https://doi.org/10.1080/07391102.2005.10507038
  26. Sokmen, M., Angelova, M., Krumova, E., Pashova, S., Ivancheva, S., Sokmen, A., and Serkedjieva, J. (2005) In vitro antioxidant activity of polyphenol extracts with antiviral properties from Geranium sanguineum L. Life Sci., 76, 2981-2993 https://doi.org/10.1016/j.lfs.2004.11.020