Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造)

  • Yu, Jae-Keun (Department of Advanced Materials Engineering, Hoseo University) ;
  • Cha, Kwang-Yong (Department of Advanced Materials Engineering, Hoseo University) ;
  • Kim, Myung-Choun (Department of Advanced Materials Engineering, Hoseo University) ;
  • Han, Joung-Su (Department of Advanced Materials Engineering, Hoseo University) ;
  • Jang, Jae-Bum (Regional Innovation Center, Hoseo University) ;
  • Lee, Yong-Hwa (Regional Innovation Center, Hoseo University) ;
  • Kim, Dong-Hee (College of Medicine, Dankook University)
  • 유재근 (호서대학교 신소재공학과) ;
  • 차광용 (호서대학교 신소재공학과) ;
  • 김명춘 (호서대학교 신소재공학과) ;
  • 한정수 (호서대학교 신소재공학과) ;
  • 장재범 (호서대학교 지역혁신센터) ;
  • 이용화 (호서대학교 지역혁신센터) ;
  • 김동희 (단국대학교 의과대학)
  • Published : 2008.12.27

Abstract

This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

본 연구는 폐 주석의 리싸이클링을 통한 고기능성 주석 산화물 나노 분말의 대량제조 기술개발을 위한 전 단계 연구로서 주석 염화물 용액을 원료로 하여 분무열분해 반응에 의하여 평균입도 50nm 이하의 주석 산화물 분말을 제조하였으며 반응온도의 변화에 따른 생성 입자들의 특성 변화를 파악하였다. 열분해 반응온도가 $800^{\circ}C$로부터 $850^{\circ}C$로 증가함에 따라 형성된 입자들의 평균입도는 20 nm로부터 30 nm로 증가하였다. 또한 XRD 피크의 강도도 증가하였으며 비표면적은 1/2 정도로 크게 감소하였다. 반응온도 $900^{\circ}C$의 경우에는 액적 형태는 평균입도 30 nm 정도의 나노 입자들로 구성되어 있는 반면 독립된 입자들의 경우에는 평균입도가 $80{\sim}100\;nm$로 현저하게 증가 하였으며 입자 표면이 더욱 치밀화되어 있었다. 또한 XRD 피크 강도도 현저히 증가하였으며 비표면적은 현저하게 감소하였다. 반응온도 $950^{\circ}C$의 경우에는 액적 형태의 비율 및 크기가 현저히 감소하였으며 대부분의 입자들은 독립된 형태를 유지하고 있었으며 평균입도는 약 70 nm로 $900^{\circ}C$의 경우보다 오히려 감소하였다. 또한 XRD 피크의 강도도 $900^{\circ}C$의 경우에 비하여 현저히 감소하였으며 비표면적은 2배 정도 크게 증가하였다.

Keywords

References

  1. Nakamura, T. and Okano, Y. 1996 : Electro Magnetic Properties of Mn-Zn Ferrite, Proceeding of the ICF 7, pp. C1-101
  2. Udawatte, C. P. and Yanagisawa, K. 2001 : Fabrication of Low Porosity Indium Tin Oxide Ceramics in Air from Hydrothermally Prepared Powder, J. Am. Ceram. Soc., 84, pp. 251-253 https://doi.org/10.1111/j.1151-2916.2001.tb00645.x
  3. Yu, J. K., Kang, S. G., Chung, K. C., Han, J. S., and Kim, D. H. 2007 : Fabrication of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process, Materials Transactions, 48, pp. 249-257 https://doi.org/10.2320/matertrans.48.249
  4. Yu, J. K., Kim, K. W., Kim, T. S., and Kim,, J. Y. 2005 : Fabrication of Nano-Sized Powders from Waste Solution by Spray Pyrolysis Process, Materials Transactions, 46, pp. 1695-1700 https://doi.org/10.2320/matertrans.46.1695
  5. Majumdar, D., Shefelbine, T. A., and Kodas, T. T. 1996 : Copper(I) Oxide Powder Generation by Spray Pyrolysis, J. Mater. Res., 11, pp. 861-2868
  6. Pluym, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., and Kodas, T. T. 1993 : Palladium Metal and Palladium Particle Production by Spray Pyrolysis, Mat. Res. Bull., 28, pp. 369-376 https://doi.org/10.1016/0025-5408(93)90070-T
  7. Pluym, T. C. and Kodas, T. T. 1995 : Silver-Palladium Alloy Particle Production by Spray Pyrolysis, J. Mater. Res., 10, pp. 1661-1673 https://doi.org/10.1557/JMR.1995.1661
  8. Gurav, A., Kodas, T. T., Pluym, T. C., and Xiong, Y. 1993 : Aerosol Processing of Materials, Aerosol Sci. Technol., 19, pp. 411-452 https://doi.org/10.1080/02786829308959650
  9. Elmasry, M. A. A., Gaber, A., and Khater, E. M. H. 1997 : Preparation of Nickel Ferrite Using the Aerosolization Technique, Powder Technology, 90, pp. 165-168 https://doi.org/10.1016/S0032-5910(96)03220-2
  10. Messing, G. L., Zhang, S. C., and Jayanthi, G. V. 1993 : Ceramic Powder Synthesis by Spray Pyrolysis, J. Am. Ceram. Soc., 76, pp. 2707-2726 https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  11. Antony, A., Manoj, M., and Jayaraj, M. K. 2004 : Influence of target to Substrate Spacing on the Proterties of ITO Thin Films, Appl. Surf. Sci., 225, pp. 294-301 https://doi.org/10.1016/j.apsusc.2003.10.017
  12. Cruz, L. R., Legnani, C., Matoso, I. G., Ferreira, C. L., and Moutinho, H.R. 2004: Influence of Pressure and annealing on the Microstructural and Electro-Optical properties of RF Magnetron Spettered ITO Thin Films, Mat. Res. Bull., 39, pp 993-1003 https://doi.org/10.1016/j.materresbull.2004.03.008
  13. Hu, Y., Diao, X., Wang, C., Hao, W., and Wang, T. 2004 : Effects of Heat Treatment on Properties of ITO Films Prepared by RF Magnetron Sputtering, Vacuum, 75, pp. 183-188 https://doi.org/10.1016/j.vacuum.2004.01.081
  14. Maki, K., Komiya, N., and Suzuki, A. 2003 : Fabrication of Thin Films of ITO by Aerosol CVD, Thin Solid Films, 445, pp. 224-248 https://doi.org/10.1016/j.tsf.2003.08.021
  15. Tang, S., Yao, J., Chen, J., and Luo, J. 2003 : Preparation of Indium Tin Oxide(ITO) with a Single-Phase Structure, J. Mater. Process Technol., 137, pp. 82-85 https://doi.org/10.1016/S0924-0136(02)01072-5
  16. Utsumi, K., Matsunaga, O., and Takahata, T. 1998 : Low Resistivity ITO Film Prepared Using the Ultra High Density ITO Target, Thin Solid Films, 334, pp. 30-34 https://doi.org/10.1016/S0040-6090(98)01111-0
  17. Wu, W. F., Chiou, B. S. and Hsieh, S. T. 1994 : Effect of Sputtering Power on the Structural and Optical Properties of RF magnetron Sputtered ITO Films, Semicond. Sci. Technol., 9, pp. 1242-1249 https://doi.org/10.1088/0268-1242/9/6/014
  18. Yu, J. K., Kang, S. G., Kim, J. B., Kim, J. Y., Han, J. S., Yoo, J. W., Lee, S. W., and Ahn, Z. S. 2006 : Nano-Sized Indium Oxide Powder Synthesized by Spray Pyrolysis Process, Materials Transactions, 47, pp. 1838-1846 https://doi.org/10.2320/matertrans.47.1838