DOI QR코드

DOI QR Code

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Published : 2008.12.31

Abstract

In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Keywords

References

  1. C. H. Kang et al., 'High-Level Radwaste Disposal Technology Development- Geological Disposal System Development,' KAERI/RR-2017/99. Korea Atomic Energy Research Institute (1999)
  2. J. Y. Lee, D. S. Cho, S. G. Kim, J. W. Choi, and P. S. Hahn, 'Development of the Korean Reference Vertical Disposal System Concept for Spent Fuels,' WM' 06 Conference, Tucson, USA, Feb. 26 - Mar. 2, 2006
  3. W. J. Cho, J. O. Lee, K. S. Chun, and H. S. Park, 'Analysis of Functional Criteria for Buffer Material in a High-Level Radioactive Waste Repository,' J. Korean Nucl. Soc., 31, 116-132 (1999)
  4. R. Pusch, 'The Performance of Clay Barriers in Repositories for High-Level Radioactive Waste,' Nucl. Eng. Technol., 38, 483-488 (2006)
  5. W. J. Cho, J. O. Lee, and K. S. Chun, 'Basic Physicochemical and Mechanical Properties of Domestic Bentonite for Use as a Buffer Material in a High-Level Radioactive Waste Repository,' J. Korean Nucl. Soc., 31, 39-50 (1999)
  6. C. H. Kang et al., 'High-Level Radwaste Disposal Technology Development -Geological Disposal System Development,' KAERI/RR-2013/99. Korea Atomic Energy Research Institute (1999)
  7. J. I. Kim, 'Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal,' Nucl. Eng. Technol., 38, 459-482 (2006)
  8. M. Yui, 'Database Development of Glass Dissolution and Radionuclide Migration for Performance Analysis of HLW Repository in Japan,' J. Nucl. Materials, 298, 136-144 (2001) https://doi.org/10.1016/S0022-3115(01)00578-5
  9. D. L. Parkhurst and C. A. J. Appelo, ' User's Guide to PHREEQC (Version 2),' U.S. Department of the Interior, Colorado (1999)
  10. Th. J. Wolery and S. A. Daveler, 'EQ6 A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems: User's Guide and Documentation,' UC-70, Lawrence Livermore National Laboratory (1989)
  11. D. K. Keum and P. S. Hahn, 'MUGREM User's Manual,' KAERI/TR-1280/99, Korea Atomic Energy Research Institute (1999)
  12. J. Fuger, I. L. Khodakovsky, E. I. Sergeyeva, V. A. Medvedev, and J. D. Navratil, 'The Chemical Thermodynamics of Actinide Elements and Compounds: Part 12. The Actinide Aqueous Inorganic Complexes,' International Atomic Energy Agency (1992)
  13. I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner, H., The Chemical Thermodynamics of Uranium, OECD/NEA, North-Holland, Amsterdam (1992)
  14. R. J. Silva, G. Bidoglio, M. H. Rand, P. B. Robouch, H. Wanner, and I. Puigdomenech, Chemical Thermodynamics of Americium, OECD/NEA, Elsevier Science, Amsterdam (1995)
  15. J. A. Rard, M. H. Rand, G. Anderegg and H. Wanner, Chemical Thermodynamics of Technetium, OECD/NEA, Elsevier Science, Amsterdam (1999)
  16. R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge and H. Wanner, Chemical Thermodynamics of Neptunium and Plutonium, OECD/NEA, Elsevier Science, Amsterdam (2001)
  17. R. Guillaumont, Th. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer and M. H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, OECD/NEA, Elsevier Science, Amsterdam (2003)
  18. H. Gamsjäger, J. Bugajski, T. Gajda, R. Lemire and W. Preis, Chemical Thermodynamics of Nickel, OECD/NEA, Elsevier Science, Amsterdam (2005)
  19. A. Olin, B. Nolang, L.-O. Ohman, E. Osadchii and E. Rosen, Chemical Thermodynamics of Selenium, Elsevier Science, Amsterdam (2005)
  20. W. Hummel, G. Anderegg, I. Puigdomenech, L. Rao and O. Tochiyama, Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with Selected Organic Ligands, OECD/NEA, Elsevier Science, Amsterdam (2005)
  21. J. Bruno, D. Bosbach, D. Kulik and A. Navrotsky, Chemical Thermodynamics of Solid Solutions of interest in Nuclear Waste Management, OECD/NEA, Elsevier Science, Amsterdam (2007)
  22. W. Hummel, U. Berner, E. Curti, F. J. Pearson, and T. Thoenen, Nagra/PSI Chemical Thermodynamic data base 01/01, p.35, Universal Publishers, Parkland (2002)
  23. P. S. Hahn et al., 'HLW Disposal Technology Development: Radionuclide Behavior at Underground Environment,' KAERI/RR-2326/2002, Korea Atomic Energy Research Institute (2003)
  24. S. S. Kim, M. H. Baik, K. C. Kang, S. H. Kwon, and J. W. Choi, 'Solubilities of Actinides in a Domestic Groundwater and a Bentonite Porewater Calculated by Using PHREEQC,' J. Ind. Eng. Chem., 14, 739-746 (2008) https://doi.org/10.1016/j.jiec.2008.07.005
  25. W. J. Cho et al., 'HLW Disposal Technology Development: Validation of the Performance of HLW Disposal System,' KAERI/RR-2781/2006, Korea Atomic Energy Research Institute (2007)
  26. I. G. McKinley and A. Scholtis, A., 'Compilation and Comparison of Radionuclide Sorption Database Used in Recent Performance Assessments', Proceedings of an NEA Workshop on Radionuclide Sorption from the Safety Evaluation Perspective, Interlaken, Switzerland, Oct. 16-18 (1991)
  27. J. W. Choi and D. W. Oscarson, 'Diffusive Transport through Compacted Na- and Ca-Bentonite,' J. of Contam. Hydrol., 22, 189-202 (1996) https://doi.org/10.1016/0169-7722(95)00081-X
  28. C. H. Kang et al., 'High-Level Radwaste Disposal Technology Development,' KAERI/RR-2336/2002, Korea Atomic Energy Research Institute (2002)
  29. H. T. Kim, T. W. Suk, and S. H. Park, 'Diffusivities for Ions through Compacted Na-Bentonite with Varying Dry Bulk Density,' Waste Management, 13, 303-308 (1993) https://doi.org/10.1016/0956-053X(93)90058-5
  30. J. O. Lee, W. J. Cho, P. S. Hahn, and K. J. Lee, 'Effect of Dry Density on Sr-90 Diffusion in a Compacted Ca-Bentonite for a Backfill of Radioactive Waste Repository,' Ann. Nucl. Energy, 23(9), 727-738 (1996) https://doi.org/10.1016/0306-4549(96)88704-4
  31. J. W. Choi, C. H. Jung, K. S. Chun, H. S. Park, J. H. Whang, and B. H. Lee, 'Diffusion of Radionuclides in Compacted Bentonite,' Proc. of Conference on High Level Radioactive Waste Management, La Grande Park, IL. 2278-2283, 1992
  32. P. S. Hahn, W. J. Cho, J. W. Lee, D. K. Kim, and E. Y. Jeong, 'A Study on the Safety Assessment for the Radwaste Disposal,' KAERI-NEMAC/RR-119/94, Korea Atomic Energy Research Institute (1994)
  33. J. O. Lee, K. J. Lee and W. J. Cho, 'Sorption and Diffusion of I-125 and Sr-90 in a Mixture of Bentonite and Crushed Granite Backfill of Radioactive Waste Repository,' Radiochimica Acta, 76, 143-151 (1997)
  34. W. J. Cho, D. W. Oscarson, M. N. Gray, and S. C. H. Cheung, 'Influence of Diffusant Concentration on Diffusion Coefficient in Clay,' Radiochimica Acta, 60, 159-163 (1993)
  35. W. J. Cho, J. O. Lee, P. S. Hahn, and H. H. Park, 'Hydraulic and Diffusive Properties of Clay-Based Backfill Material for a Low- and Intermediate-Level Waste Repository,' Scientific Basis for Nuclear Waste Management, XVIII, 299-306 (1995)
  36. K. W. Han et al., 'Development of the Safety Assessment Technology for the Radwaste Disposal: A Study on the Migration of Radionuclides in the Repository,' KAERINEMAC/ RR-56/91, Korea Atomic Energy Research Institute (1991)
  37. K. Skagius and I. Neretnieks, 'Porosities and Diffusivities of Some Nonsorbing Species in Crystalline Rocks,' Water Resour. Res., 22, 389-398 (1986) https://doi.org/10.1029/WR022i003p00389
  38. K. Skagius and I. Neretnieks, 'Measurement of Cs and Sr Diffusion in Biotite Gneiss,' Water Resour. Res., 24, 75 (1988) https://doi.org/10.1029/WR024i001p00075
  39. P. S. Hahn et al., 'HLW Disposal Technology Development:Radionuclide Behavior at Underground Environment,' KAERI/RR-2007/1999, Korea Atomic Energy Research Institute (1999)
  40. Y. Ohlsson and I. Neretnieks, 'Diffusion Data in Granite,' SKB TR 97-20, Swedish Nuclear Fuel and Waste Management Co. (1997)
  41. Y. Ohlsson and I. Neretnieks, 'Literature Survey of Matrix Diffusion Theory and of Experiments and Data Including Natural Analogues,' SKB TR 95-12, Swedish Nuclear Fuel and Waste Management Co. (1995)
  42. F. Brandberg, 'Porosity, Sorption and Diffusivity Data Compiled for SKB 91 Study,' SKB TR 91-16, Swedish Nuclear Fuel and Waste Management Co. (1991)
  43. T. Yamaguchi and S. Nakayama, 'Diffusivity of U, Pu and Am Carbonate Complexes in a Granite from Inada, Ibaraki, Japan Studied by Through Diffusion,' J. of Contam. Hydrol., 35, 55 (1998) https://doi.org/10.1016/S0169-7722(98)00115-6
  44. T. Suyama, and H. Sasamoto, 'A Renewal of the JNCSorption Database (JNC-SDB) Addition of Literature Data Published from 1998 to 2003,' JNC Technical Report (in Japanese with English abstract) TN8410 2003-018, Japan Nuclear Cycle Development Institute, Tokai (2004)
  45. V. Brendler, A. Vahle, T. Arnold, G. Bernhard, and Th. Fanghanel, '$RES^3T$-Rossendorf Expert System for Surface and Sorption Thermodynamics,' J. Contam. Hydrol., 61, 281-291 (2003) https://doi.org/10.1016/S0169-7722(02)00129-8
  46. J. Jung, J. K. Lee, and P. S. Hahn, 'Development and Application of a Sorption Data Base for the Performance Assessment of a Radwaste Repository,' Waste Management, 21, 363-369 (2001) https://doi.org/10.1016/S0956-053X(00)00083-0
  47. J. I. Kim, G. Buckau, F. Baumgartner, H. C. Moon, and D. Lux, 'Colloid Generation and the Actinide Migration in Groundwaters,' Scientific Basis for Nuclear Waste Management, VII, 31 (1984)
  48. C. Degueldre, 'Colloid Properties in Granitic Groundwater Systems with Emphasis on the Impact on Safety Assessment of a Radioactive Waste Repository,' Scientific Basis for Nuclear Waste Management, XVI, 817 (1993)
  49. A. B. Kersting, D. W. Efurd, D. L. Finnegan, D. J. Rokop, D. K. Smith, and J. L. Thompson, 'Migration of Plutonium in Groundwater at the Nevada Test Site,' Nature, 397, 56-59 (1999) https://doi.org/10.1038/16231
  50. B. Allard, F. Karlsson, and I. Neretnieks, 'Concentration of Particulate Matter and Humic Substances in Deep Groundwaters and Estimated Effects on the Adsorption and Transport of Radionuclides,' SKB/TR 91-50, Swedish Nuclear Fuel and Waste Management Co., Stockholm (1991)
  51. P. Vilks, J. J. Cramer, D. B. Bachinski, D. C. Doern, and H. G. Miller, 'Studies of Colloids and Suspended Particles, Cigar Lake Uranium Deposit, Saskatchwan, Canada,' Appl. Geochem., 8, 605 (1993) https://doi.org/10.1016/0883-2927(93)90016-A
  52. C. Degueldre, 'Colloid Properties in Groundwaters from Crystalline Formation,' Bericht 94-21, Paul Scherrer Institute (1994)
  53. M. H. Baik, P. S. Hahn, and P. Vilks, 'Characterization of Natural Colloids Sampled from Deep Granite Groundwater of the Canadian Shield,' Environ. Eng. Res., 4(3), 165-176 (1999)
  54. M. H. Baik, J. I. Yun, M. Bouby, W. J. Cho, P. S. Hahn, and J. I. Kim, 'Characterization of Aquatic Groundwater Colloids by a Laser-Induced Breakdown Detection (LIBD) and Inductively Coupled Plasma Mass Spectrometry (ICPMS) Combined with an Asymmetric Flow Field-Flow Fractionation (AsymFFFF),' Korean J. of Chem. Eng., 24(5), 723-729 (2007) https://doi.org/10.1007/s11814-007-0033-7
  55. P. Vilks and M. H. Baik, 'Laboratory Migration Experiments with Radionuclides and Natural Colloids in a Granite Fracture,' J. Contam. Hydrol., 47,197-210 (2001) https://doi.org/10.1016/S0169-7722(00)00149-2
  56. M. H. Baik, P. S. Hahn, and H. H. Park, 'Experimental Study on Uranium Sorption onto Silica Colloids; Effects of Geochemical Parameters,' J. of Korean Nucl. Soc., 33(3), 261-269 (2001)
  57. M. H. Baik and W. J. Cho, 'An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid,' J. Korean Radioactive Waste Soc., 4(3), 235-243 (2006)
  58. P. A. Smith and C. Degueldre, 'Colloid-Facilitated Transport of Radionuclides through Fractured Media,' J. Contam. Hydrol., 13, 143 (1993) https://doi.org/10.1016/0169-7722(93)90055-W
  59. M. Ibaraki and E. A. Sudicky, 'Colloid-Facilitated Contaminant Transport in Discretely Fractured Porous Media. 1. Numerical Formulation and Sensitivity Analysis,' Water Resour. Res., 31(12), 2945 (1993) https://doi.org/10.1029/95WR02180
  60. M. H. Baik and P. S. Hahn, 'Radionuclide Transport Facilitated by Polydispersed Pseudo-Colloids in the Fractured Rock Media,' J. Nucl. Sci. Technol., 34(1), 41 (1997) https://doi.org/10.3327/jnst.34.41

Cited by

  1. Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes vol.11, pp.2, 2013, https://doi.org/10.7733/jkrws.2013.11.2.95
  2. In Situ Solute Migration Experiments in Fractured Rock at KURT: Installation of Experimental System and In Situ Solute Migration Experiments vol.11, pp.3, 2013, https://doi.org/10.7733/jnfcwt-k.2013.11.3.229
  3. Plutonium-239 sorption and transport on/in unsaturated sediments: comparison of batch and column experiments for determining sorption coefficients vol.296, pp.3, 2013, https://doi.org/10.1007/s10967-012-1960-2
  4. Sr transport through a column filled with crushed granite in the presence of bentonite colloids vol.443, pp.1, 2016, https://doi.org/10.1144/SP443.14
  5. Investigation of 3H, 99Tc, and 90Sr transport in fractured rock and the effects of fracture-filling/coating material at LILW disposal facility pp.1573-2983, 2018, https://doi.org/10.1007/s10653-018-0123-y