Optimum Dietary Lipid Level and Feeding Rates of Extruded Pellets in Juvenile Flounder Paralichthys olivaceus during the Summer Season

여름철 넙치치어 배합사료의 적정지질함량 및 공급량

  • 최세민 (국립수산과학원 양식사료연구센터) ;
  • 김강웅 (국립수산과학원 양식사료연구센터) ;
  • 강용진 (국립수산과학원 양식사료연구센터) ;
  • 박흥식 ((주)수협사료) ;
  • 배승철 (부경대학교 양식학과)
  • Published : 2008.11.25

Abstract

We evaluated the optimum dietary lipid level and feeding rates of extruded pellets (EP) in juvenile flounder Paralichthys olivaceus during the summer season. The first experiment was conducted to determine the optimum dietary lipid level in juvenile flounder. Five isonitrogenous EP (52% crude protein) with increasing dietary lipids (6, 8, 10, 12 and 14%) were fed to satiety to triplicate groups of the juveniles ($18.4{\pm}0.11g$) twice a day for 6 weeks. Weight gain (WG) of fish fed EP with 10% lipid was significantly higher than those of fish fed EP with 6 and 14% lipid (P<0.05). Broken line model analysis suggested that the optimum dietary lipid level could be $9.08{\pm}0.37%$ for the maximum WG in juvenile flounder. The second experiment was conducted to determine the optimum feeding rate using experimental diet contained 10% lipid level that had the highest WG in first experiment. The feed intake of triplicate groups of the juveniles ($13.4{\pm}0.15g$) was restricted to four different feeding rates of 2.0, 2.5, 3.0 and 3.5% of their body weight $day^{-1}$ and to satiation using experimental diets. WG and feed efficiency (FE) of fish was affected by feeding rates. WG and specific growth rate of fish fed the diets increased with increasing feeding rate, however no significant differences (P>0.05) in WG and specific growth rate were observed between the fish fed 3.5% of their body weight $day^{-1}$ and to satiation. FE of fish fed 3.5% of their body weight $day^{-1}$ was significantly higher than those offish fed 2.0% of their body weight $day^{-1}$ and to satiation (P<0.05). Broken line model analysis suggested that the optimum dietary feeding rate could be $3.56{\pm}0.06%$ for the maximum WG in juvenile flounder. These results indicated that the optimum lipid level and feeding rate could be $9{\sim}10%$ (Energy: 4,774kcal and PIE ratio: 108mg protein/kcal in diet) and 3.5% of their body weight $day^{-1}$in juvenile flounder, respectively.

본 연구는 여름철에 넙치 치어 배합사료의 적정 지질함량 및 적정 사료공급량을 규명하는데 그 목적이 있다. 적정 지질함량 실험에서 실험사료는 사료내 단백질함량은 52로 동일하게 맞추고 지질함량은 6, 8, 10, 12, 14%가 되도록 설계 하였다. 평균 무게 $18.4{\pm}0.11\;g$ ($mean{\pm}SD$)인 넙치 치어를 300 L 사각수조에 30마리씩 수용하여 각 실험구당 3반복으로 6주간 실시하였으며, 실험기간 동안 평균 수온은 $21{\sim}25^{\circ}C$였다. 실험결과, 증중률, 일간성장률, 사료효율 및 단백질전환효율은 사료내 지질함량이 사료내 지질 함량이 8%(L8)및 10%(L10)인 실험구가 6, 14%인 실험구보다 유의적으로 높았으며(P<0.05), 사료내 지질 함량이 12%인 실험구와는 유의적인 차이가 나타나지 않았다. Broken line model분석을 통한 최대 성장을 위한 여름철 넙치치어 배합사료의 적정 지질 함량은 $9.08{\pm}0.37%$로 사료된다. 적정 공급량 실험에서는 적정 지질함량 실험에서 성장결과가 가장 우수했던 L10을 사용하여 사료공급량을 어체 중 당 2.0, 2.5, 3.0, 3.5% 그리고 만복공급으로 구분으로 6주간 실험하였다. 실험어는 평균무게 $13.4{\pm}0.1\;g$ ($mean{\pm}SD$)인 넙치 치어를 300 L 사각수조에 각각 30마리씩 수용하여 각 실험구당 3반복으로 실시하였으며, 실험기간 동안 평균 수온은 $21{\sim}25^{\circ}C$였다. 적정 사료공급량 실험결과, 증중률, 일간성장률은 사료공급량이 증가할수록 유의적으로 높게 나타났지만(P<0.05),사료공급량이 어체중 당 3.5%와 만복 실험구(어체중 당 4.0% 수준)는 유의적인 차이가 나타나지 않았다(Table 6). Broken line model 분석을 통한 최대 성장을 위한 여름철 단백질 52%,지질 10% (P/E ratio; 108mg protein/kcal)를 함유한 넙치치어 배합사료의 적정 사료공급량은 어체중 당 $3.56{\pm}0.06$로 사료된다. 따라서, 본 연구를 통하여 여름철 넙치치어($10{\sim}50\;g$)배합사료의 적정지질 함량은 $9{\sim}10%$ (Energy: 4,774 kcal, P/E ratio; 108 mg protein/kcal)내외, 이에 대한 적정사료 공급량은 어체중 당 3.5% 내외가 될 것으로 사료된다.

Keywords

References

  1. Andersen, N. G. and N. S. Alsted, 1993. Growth and body composition of turbot (Scophthalmus maximus) in relation to different lipid/protein ratios in the diet. (in) S. J. Kaushik and P. Luquet (eds.), Fish Nutrition in Practice. INRA Editions, Biarritz, France, pp. 479−491
  2. AOAC (Association of Official Analytical Chemists), 2000. Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edition. Association of Official Analytical Chemists, Inc., Arlington, VA
  3. Azzaydi, M., F. J. Martines, S. Zamora, Sanchez-Valzquez and J. A. Madrid, 2000. The influence of nocturnal vs. diurnal feeding condition under winter condition on growth and feed conversion of European sea bass (Dicentrarchus labrax L.). Aquaculture, 182, 329−338
  4. Brett, J. R. and D. A. Higgis, 1970. Effects of temperature on rate of gastric digestion in fingerling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd. Can., 27, 1767−1779
  5. Brett, J. R., J. E. Shelborn and C. T. Shoop, 1969. Growth rate and body composition of fingerling sockeye salmon (Onchorhynchus nerka) in relation to temperature and ration size. J. fish. Res. Bd. Can., 26, 2363−2394
  6. Cacerez-Martinez, C., 1984. Etudes sur les besoins nutritionels de la sole (Solea vulgaris) et turbot(Psetta maxima). Ph.D. thesis, Universite de Bretangne Occidentale, Brest, France, 132 pp
  7. Cho, C. Y., 1992. Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100, 107−123
  8. Cho, C.Y. and D. P. Bureau, 1998. Development of bioenergetic models and the Fish-PrFEQ software to estimate production, feeding ration and waste output in aquaculture. Aquat. Living Resour., 11(4), 199−210
  9. Cho, C. Y. and S. J. Kaushik, 1990. Nutritional energetic in fish: energy and protein utilization in rainbow trout (Samom gairdneri). World Rev. Nutr. Diet., 61, 132−172
  10. Cowey, C. B., 1993. Some effects of nutrition and flesh quality of culture fish. (in) S. J. Kaushik & P. Luquet (eds.), Fish Nutrition in Practice. INRA Editions, Biarritz, France, pp. 227−236
  11. Eroldogan, O. T., M. Kumlu and M. Aktas, 2004. Optimum feeding rates for European sea bass (Dicentrarchus labrax ) reared in sea water and fresh water. Aquaculture, 231, 501−515
  12. Halver, J. E. and R. W. Hardy, 2002. Fish Nutrition, third edition. Academic press, California, USA, 824 pp
  13. Hillestrad, M. and F. Johnsen, 1994. High energy/low protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture, 124, 109−116
  14. Johnsen, F. and A. Wandsvik, 1990. The impact of high energy diets on pollution control in the fish farming industry. (in) Cowey, C.B. and C. Y. Cho (eds.), Proc. First Int. Symp. on Nutritional Strategies in Management of Aquaculture Waste, Ontario, Canada, pp. 51−63
  15. Kikuchi, K., H. Sugita and T. Watanabe, 2000. Effect of dietary protein and lipid level on growth and body composition of Japanese flounder. Suisanzoshoku, 48(3), 537−543
  16. Kim, K. W., X. J. Wang and S. C. Bai, 2002. Reevaluation of the dietary protein requirement of Japanese flounder (Paralichthys olivaceus). Aquacult. Res., 33, 673−679
  17. Kim, K. D. and S. M. Lee, 2004. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture, 229, 315−323
  18. Lee, S. M., S. H. Cho and D. J. Kim, 2000. Effects of feeding frequency and dietary energy level on growth and body composition of juvenile flounder, (Paralichthys olivaceus). Aquacult. Res., 31, 917-921 https://doi.org/10.1046/j.1365-2109.2000.00505.x
  19. Lee, S. M., C. S. Park and I. C. Bang, 2002. Dietary protein requirement of young Japanese flounder (Paralichthys olivaceus) fed isocaloric diets. Fish. Sci., 68, 158−164 https://doi.org/10.2331/suisan.68.164
  20. Lee, S. M. and K. D. Kim, 2005. Effects of lipid exchanged with dextrin at different protein level in diet on growth and body composition of juvenile flounder (Paralichthys olivaceus). Aquacult. Nut., 11, 435−442
  21. National Research Council (NRC), 1993. Nutrient Requirements of Fish. National Acad. Press, Washington D.C., USA, 114 pp
  22. Olsen, R, E. and E. Ringo, 1998. The influence of temperature on the apparent nutrient and fatty acid digestibility of Arctic charr (Salvelinus alpinus). Aquacult. Res., 29, 695−701
  23. Regost, C., J. Arzel, M. Cardinal, J. Robin, M. Laroche and S. J. Kaushik, 2001. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture, 193, 291−309
  24. Peres, H. and A. Oliva-Teles, 1999a. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juvenile (Dicentrarchus labrax). Aquaculture, 179, 325−334
  25. Peres, H. and A. Oliva-Teles, 1999b. Influence of temperature on the apparent nutrition on protein utilization in juvenile European sea bass. Aquaculture, 170, 337−348
  26. Robbins, K. R., H. W. Norton and D. H. Baker, 1979. Estimation of nutrient requirements from growth data. J. Nut., 109, 1710−1714
  27. Sato, T., 1998. Development of formulated feeds for juvenile Japanese flounder. Ph.D. thesis. Tokyo University of Fisheries, Tokyo, Japan
  28. Springate, J., 1991. Extruded diets-worth the extra. Fish Farmer (March/April 1991). 45 pp
  29. Tsevis, N., S. Klaoudatos and A. Conides, 1992. Food conversion budget in sea bass (Dicentrarchus labrax), fingerlings under two different feeding frequency patterns. Aquaculture, 101, 293−304
  30. Wilson, R. P. and J. E. Halver, 1986. Protein and amino acid requirements of fishes. Annu. Rev. Nutr., 6, 225−244
  31. Wilson, R. P., 1989. Amino acids and proteins. (in) J. E. Halver (ed.), Fish Nutrition, 2nd edition. Academic Press, San Diego, CA, pp. 111−151