DOI QR코드

DOI QR Code

Evaluation of Strength Parameters of Cemented Sand

고결모래의 강도정수 평가

  • Lee, Hoon-Joo (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Choi, Sung-Kun (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.)
  • 이문주 (고려대학교 건축.사회환경공학과) ;
  • 최성근 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과)
  • Published : 2008.11.30

Abstract

This study proposes the equations evaluating the shear strength of cemented sand by analytical interpretation based on Mohr-Coulomb failure criteria, and verifies them using the results of triaxial and unconfined compression tests. The internal friction angle of cemented sand is identical to that of uncemented one regardless of the stress level, while the cohesion intercept of cemented sand is constant before the breakage of cementation bonds. Therefore, the shear strength of cemented sand can be represented as a summation of the shear strength of uncemented sand and the unconfined compressive strength of cemented sand. In addition, the cohesion intercept of cemented specimen can be expressed as a function of unconfined compressive strength and friction angle. In the transition zone, assuming a constant shear strength, the equations to evaluate shear strength and cohesion intercept of cemented sand are also represented. It is observed that the predicted values using these solutions agree well with the experimental results. The experimental results also show a linear relationship between the unconfined compressive strength and the breaking point of cementation bonds.

본 연구에서는 Mohr-Coulomb 파괴기준에 따라 고결모래의 전단강도를 유도하고, 삼축 및 일축압축시험으로 검증하였다. 모래의 마찰각은 고결의 영향을 받지 않으며, 일정구속압 이하에서 고결모래의 점착력은 고결정도에 따라 일정하다. 따라서 고결모래의 전단강도는 미고결 모래의 전단강도와 고결모래의 일축압축강도의 합으로 표현되며, 고결모래의 점착력은 마찰각과 일축압축강도의 함수로 표현되었다. 또한 고결결합 파괴구속압 이후인 전이구간에서 고결모래의 전단강도는 비교적 일정하게 유지된다고 가정하여 전이구간에서 고결모래의 전단강도와 점착력을 유도하였다. 추정된 고결모래의 전단강도와 점착력은 실험결과와 잘 일치하였다. 실험 결과는 또한 고결모래의 점착력 변화에 큰 영향을 미치는 고결결합 파괴구속압이 일축압축강도와 선형비례관계임을 보여준다.

Keywords

References

  1. 김기영, 박한규, 전제성 (2005), "Cemented sand and gravel 재료 의 강도특성", 한국지반공학회논문집, Vol.21, No.10, pp.61-71
  2. 이문주, 최성근, 추현욱, 조용순, 이우진 (2007a), "응력조건에 따 른 고결모래의 강도정수 평가", 한국지반공학회논문집, Vol.23, No.5, pp.143-151
  3. 이문주, 최성근, 추현욱, 조용순, 이우진 (2007b), "고결모래의 강 도특성에 대한 영향요인 분석", 한국지반공학회논문집, Vol.23, No.12, pp.75-82
  4. 이우진, 이문주, 최성근, 홍성진 (2006), "고결(Cementation)에 따 른 모래의 비배수 전단거동 변화", 한국지반공학회논문집, Vol.22, No.4, pp.85-94
  5. Abdulla, A. A., and Kiousis, P. D. (1997), "Behavior of cemented sands - I. Testing", International Journal of Numerical and Analytical Methods in Geomechanics, Vol.21, pp.533-547 https://doi.org/10.1002/(SICI)1096-9853(199708)21:8<533::AID-NAG889>3.0.CO;2-0
  6. Acar, Y. B., and El-Tahir, E. A. (1986), "Low strain dynamic properties of artificially cemented sand", Journal of Geotechnical Engineering, ASCE, Vol.112, No.11, pp.1001-1015 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
  7. Airey, D. W. (1993), "Triaxial testing on naturally cemented carbonate soil", Journal of Geotechnical Engineering, ASCE, Vol.119, No.9, pp.1379-1398 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379)
  8. Asghari, E., Toll, D. G., and Haeri, S. M. (2003), "Triaxial behaviour of a cemented gravely sand, Tehran alluvium", Geotechnical and Geological Engineering, Vol.21, pp.1-28 https://doi.org/10.1023/A:1022934624666
  9. Clough, W. G., Iwabuchi J., Rad N. S., and Kuppusamy, T. (1989), "Influence of cementation on liquefaction of sand", Journal of Geotechnical Engineering, ASCE, Vol.115, No.8, pp.1102-1117 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:8(1102)
  10. Clough, W. G., Sitar N., and Bachus R. (1981), "Cemented sands under static loading", Journal of Geotechnical Engineering Division, ASCE, Vol.107, No.6, pp.799-817
  11. Consoli, N. C., Foppa, D, Festugato, L., and Heineck, K. S. (2007), "Key parameters for strength control of artificially cemented soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.2, pp.197-205 https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)
  12. Coop, M. R., and Atkinson, J. H. (1993), "The mechanics of cemented carbonate sands", Geotechnique, Vol.43, No.1, pp.53-67 https://doi.org/10.1680/geot.1993.43.1.53
  13. Dupas, J. and Pecker, A. (1979), "Static and dynamic properties of sand-cement", Journal of Geotechnical Engineering Division, ASCE, Vol.105, No.3, pp.419-436
  14. Huang, J. T., and Airey, D. W. (1993), "Effects of cement and density on an artificially cemented sand", Geotechnical engineering of hard soils-soft rocks, Anagnostopoulos et al., eds., A. A. Balkema, Rotterdam, The Netherlands, Vol.1, pp.553-560
  15. Ismail, M. A., Joer, H. A., Sim, W. H., and Randolph. M. F. (2002a), "Effect of cement type on shear behavior of cemented calcareous soil", Journal of Geotechnical Engineering, ASCE, Vol.128, No.6, pp.520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  16. Ismail, M. A., Joer, H. A., and Randolph, M.F. (2002b), "Cementation of porous materials using calcite", Geotechnique, Vol.52, No.5, pp.313-324 https://doi.org/10.1680/geot.52.5.313.38709
  17. Joshi, R. C., Achari, G., Kaniraj, S. R., and Wijeweera, H. (1995), "Effect of aging on the penetration resistance of sands", Canadian Geotechnical Journal, NRC, Vol.32, pp.767-782 https://doi.org/10.1139/t95-075
  18. Mesri, G., Feng. T. W., and Benak, J. M. (1990), "Postdensification penetration resistance of clean sands", Journal of Geotechnical Engineering, ASCE, Vol.116, No.7, pp.1095-1115 https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1095)
  19. Mitchell, J. K., and Solymar, Z. V. (1984), "Time-dependent strength gain in freshly deposited or densified sand", Journal of Geotechnical Engineering, ASCE, Vol.110, No.11, pp.1559-1576 https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1559)
  20. O'Rourke, T. D., and Crespo, E. (1988), "Geotechnical properties of cemented volcanic soil", Journal of Geotechnical Engineering, ASCE, Vol.114, No.10, pp.1126-1147 https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1126)
  21. Rad, N. S., and Clough, G. W. (1982), "The influence of cementation on the static and dynamic behavior of sands", Report No. 59, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, Calif
  22. Schmertmann, J. H. (1991), "The mechanical aging of soils", Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1288-1330 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288)
  23. Schnaid, F. Prietto, P. D. M., and Consoli, N. C. (2001), "Characterization of cemented sand in triaxial compression", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.10, pp.857-868 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)