DOI QR코드

DOI QR Code

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Published : 2008.12.15

Abstract

Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

Keywords

References

  1. Alfriend, K. T., Schaub, H., & Gim, D. W. 2000, Advances in Astronautical Sciences (Springfield VA: AAS,, AAS-00-12)
  2. Beard, R. W., McLain, T. W., & Hadaegh, F. Y. 2000, JGCD, 23, 2
  3. Betts, J. T. 1998, JGCD, 21, 2
  4. Clohessy, W. H. & Wiltshire, R. S. 1960, Journal of the Aerospace Sciences, 27, 9
  5. Dickmanns, E. D. & Well, K. H. 1974, Proceedings of IFIP Technical Conference, ed. G. I. Marchuk (London: Springer-Verlag), pp. 158-166
  6. Enright, P. J. & Conway, B. A. 1991, JGCD, 14, 5
  7. Hargraves, C. R. & Paris, S. W. 1987, JGCD, 10, 4 https://doi.org/10.2514/3.20173
  8. Hull, D. G. 1997, JGCD, 20, 1 https://doi.org/10.2514/2.3994
  9. Johnston, A. G. Y. & McInnes, C. R. 1997, Advances in Astronautical Sciences (Springfield VA:AAS), AAS-97-104
  10. Lawrence, C., Zhou, J. L., & Tits, A. L. 1997, User's Guide for CFSQP Version 2.5 (College Park MD: University of Maryland,, pp.2-70
  11. Martin, M. & Stallard, M. 1999, Proceeding of the AIAA Space Technology Conference and Exposition (Reston VA: AIAA), AIAA-99-4479
  12. McInnes, C. R. 1995, Advances in Astronautical Sciences (Springfield VA: AAS), AAS-95-447
  13. Richards, A., Schouwenaars, T., How, J. P., & Ferson, E. 2002, JGCD, 25, 4
  14. Russell, R. D. & Shampine, L. F. 1972, Numerical Mathematics, 19, 1 https://doi.org/10.1007/BF01395926
  15. Sabol, C., Burns, R., & McLaughlin, C. A. 2001, Journal of Spacecraft and Rockets, 38, 2
  16. Singh, G. & Hadaegh, F. Y. 2001, Proceeding of the AIAA Guidance, Navigation, and Control Conference (Reston VA: AIAA,, AIAA-2001-4088
  17. Tillerson, M. & How, J. 2001, Proceeding of the AIAA Guidance, Navigation, and Control Conference (Reston VA: AIAA), AIAA-2001-4092
  18. Tillerson, M., Inalhan, G., & How, J. 2002, International Journal of Robust and Nonlinear Control, 12, 2
  19. Wang, P. K. C. & Hadaegh, F. Y. 1998, Proceeding of the AIAA Guidance, Navigation, and Control Conference (Reston VA: AIAA), AIAA-98-4226
  20. Yang, G., Yang, Q., Kapila, V., Palmer, D., & Vaidyanathan, R. 2002, International Journal Robust Nonlinear Control, 12, 2

Cited by

  1. A Robust Adaptive Control Law for Satellite Formation Flying vol.39, pp.2, 2013, https://doi.org/10.1016/S1874-1029(13)60015-4
  2. Optimal Satellite Formation Reconfiguration Based on Closed-Loop Brain Storm Optimization vol.8, pp.4, 2013, https://doi.org/10.1109/MCI.2013.2279560