DOI QR코드

DOI QR Code

Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances

간접골성 고정원을 이용한 상악 구치부 원심이동 장치 종류에 따른 치아 이동 양상 평가

  • Kim, Su-Jin (Division of Orthodontics, Department of Dentistry, College of Medicine, Ewha Womans University) ;
  • Chun, Youn-Sic (Division of Orthodontics, Department of Dentistry, College of Medicine, Ewha Womans University) ;
  • Jung, Sang-Hyuk (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Park, Sun-Hyung (Division of Orthodontics, Department of Dentistry, College of Medicine, Ewha Womans University)
  • 김수진 (이화여자대학교 의과대학 치과학교실) ;
  • 전윤식 (이화여자대학교 의과대학 치과학교실) ;
  • 정상혁 (이화여자대학교 의과대학 예방의학교실) ;
  • 박선형 (이화여자대학교 의과대학 치과학교실)
  • Published : 2008.12.30

Abstract

Objective: The purpose of this study was to compare the three dimensional changes of tooth movement using four different types of maxillary molar distalization appliances; pendulum appliance (PD), mini-implant supported pendulum appliance (MPD), stainless steel open coil spring (SP) and mini-implant supported stainless steel open coil spring (MSP). Methods: These experiments were performed using the Calorific $machine^{(R)}$ which can simulate dynamic tooth movement. Computed tomography (CT) images of the experimental model were taken before and after tooth movement in 1 mm thicknesses and reconstructed into a three dimensional model using V-works $4.0^{TM}$. These reconstructed images were superimposed using Rapidform $2004^{TM}$ and the direction and amount of tooth movement were measured. Results: The mean reciprocal anchor loss ratio at the first premolar was 17 - 19% for the PD and SP groups. The appliances using mini-implants (MPD or MSP) resulted in less anchorage loss (7 - 8%). On application of a pendulum appliance or MPD, distalization was obtained by tipping rather than by bodily movement. Furthermore, the maxillary second molar tipped distally and bucally. But on application of MSP, distalization was achieved almost by bodily movement. Conclusions: Regarding tooth movement patterns during molar distalization, stainless steel open coil spring with indirect skeletal anchorage was relatively superior to other methods.

본 연구의 목적은 pendulum 장치, 미니임플란트를 동반한 pendulum장치(펜듈럼), 오픈코일 스프링 및 미니임플란트를 동반한 오픈코일 스프링 이용 시 각각의 치아이동 양상을 3차원적으로 분석하는 데 있었다. 상악 좌측 치조골 및 치아 모형을 제작하고, Calorific $machine^{(R)}$을 이용하여 모형상에서 대구치를 3 mm 원심 이동시켰다. 실험은 5회씩 반복 실시하였다. 모델을 전산화 단층 촬영한 후 V-$Works^{TM}$를 이용하여 3차원 모델을 제작하였다. $Rapidform^{TM}$상에서 3차원적으로 이동방향과 이동량을 계측하였고, 각각의 장치에 관한 통계적 유의성을 검정하였다. 교정용 미니임플란트를 간접 골성 고정원으로 이용하여 오픈코일 스프링으로 구치부를 원심으로 이동시켰을 때가 치체이동에 가장 가까운 이동양상을 보였고, 고정원 소실도 적게 나타났다 (p < 0.05). 오픈코일 스프링, 펜듈럼 장치 모두 미니임플란트를 부가적으로 이용했을 때 고정원 소실량이 적었다 (p < 0.05). 미니임플란트를 이용하지 않은 경우에는 두 장치의 고정원 소실량이 비슷하였다. 미니임플란트의 이용 여부와 관계없이 펜듈럼 장치로 상악 구치 원심 이동 시 오픈코일 스프링에 비해 제1대구치가 조절성 경사이동 양상으로 이동되었고 (p < 0.05), 제2대구치는 비조절성 경사이동 양상을 보였으며, 치관의 협측경사이동이 일어났다 (p < 0.05). 이와 같은 결과를 근거로 간접 골성 고정원을 이용한 오픈코일 스프링이 상악 구치의 원심 치체이동에 가장 효과적인 장치였으며, 펜듈럼 장치를 이용한 구치부 원심이동 시에는 추가적인 조절이 필요하다고 할 수 있다.

Keywords

References

  1. Gianelly AA, Vaitas AS, Thomas WM, Berger DG. Distalization of molars with repelling magnets. J Clin Orthod 1988;22:40-4
  2. Gianelly AA, Vaitas AS, Thomas WM. The use of magnets to move molars distally. Am J Orthod Dentofacial Orthop 1989;96:161-7 https://doi.org/10.1016/0889-5406(89)90257-6
  3. Hilgers JJ. The pendulum appliance for Class II non-compliance therapy. J Clin Orthod 1992;26:706-14
  4. Gianelly AA, Bednar J, Dietz VS. Japanese NiTi coils used to move molars distally. Am J Orthod Dentofacial Orthop 1991;99:564-6 https://doi.org/10.1016/S0889-5406(05)81633-6
  5. Jones RD, White JM. Rapid Class II molar correction with an open-coil jig. J Clin Orthod 1992;26:661-4
  6. Carano A, Testa M. The distal jet for upper molar distalization. J Clin Orthod 1996;30:374-80
  7. Wilson WL. Variations of labiolingual therapy in Class II cases. Am J Orthod 1955;41:852-71 https://doi.org/10.1016/0002-9416(55)90189-5
  8. Karlsson I, Bondemark L. Intraoral maxillary molar distalization. Angle Orthod 2006;76:923-9 https://doi.org/10.2319/110805-390
  9. Pieringer M, Droschl H, Permann R. Distalization with a Nance appliance and coil springs. J Clin Orthod 1997;31:321-6
  10. Kircelli BH, Pektas ZO, Kircelli C. Maxillary molar distalization with a bone-anchored pendulum appliance. Angle Orthod 2006;76:650-9
  11. Chang YJ, Lee HS, Chun YS. Microscrew anchorage for molar intrusion. J Clin Orthod 2004;38:325-30
  12. Yun SW, Lim WH, Chun YS. Molar control using indirect miniscrew anchorage. J Clin Orthod 2005;39:661-4
  13. Weijs WA, de Jongh HJ. Strain in mandibular alveolar bone during mastication in the rabbit. Arch Oral Biol 1977;22:667-75 https://doi.org/10.1016/0003-9969(77)90096-6
  14. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77:396-409 https://doi.org/10.1016/0002-9416(80)90105-0
  15. Caputo AA, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic forces during canine retraction. Am J Orthod 1974;65:250-9 https://doi.org/10.1016/S0002-9416(74)90330-3
  16. Baeten LR. Canine retraction: a photoelastic study. Am J Orthod 1975;67:11-23 https://doi.org/10.1016/0002-9416(75)90125-6
  17. Moss ML, Skalak R, Patel H, Sen K, Moss-Salentijn L, Shinozuka M, et al. Finite element method modeling of craniofacial growth. Am J Orthod 1985;87:453-72 https://doi.org/10.1016/0002-9416(85)90084-3
  18. Ogura M, Yamagata K, Kubota S, Kim JH, Kuroe K, Ito G. Comparison of tooth movements using Friction-Free and preadjusted edgewise bracket systems. J Clin Orthod 1996;30:325-30
  19. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 1991;13:169-78 https://doi.org/10.1093/ejo/13.3.169
  20. Rhee JN, Chun YS, Row J. A comparison between friction and frictionless mechanics with a new typodont simulation system. Am J Orthod Dentofacial Orthop 2001;119:292-9 https://doi.org/10.1067/mod.2001.112452
  21. Chun YS, Row J, Suh MS, Park IK. An experimental study on the dynamic tooth moving effects of two precision lingual archs (Pla) for correction posterior scissor bite by the calorific machine. Korean J Orthod 1998;28:29-41
  22. Ghosh J, Nanda RS. Evaluation of an intraoral maxillary molar distalization technique. Am J Orthod Dentofacial Orthop 1996;110:639-46 https://doi.org/10.1016/S0889-5406(96)80041-2
  23. Keles A, Erverdi N, Sezen S. Bodily distalization of molars with absolute anchorage. Angle Orthod 2003;73:471-82
  24. Wehrbein H, Feifel H, Diedrich P. Palatal implant anchorage reinforcement of posterior teeth: a prospective study. Am J Orthod Dentofacial Orthop 1999;116:678-86 https://doi.org/10.1016/S0889-5406(99)70204-0
  25. Carano A, Velo S, Leone P, Siciliani G. Clinical applications of the Miniscrew Anchorage System. J Clin Orthod 2005;39:9-24
  26. Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK Jr, Roberts WE, Garetto LP. The use of small titanium screws for orthodontic anchorage. J Dent Res 2003;82:377-81 https://doi.org/10.1177/154405910308200510
  27. Sugawara J, Kanzaki R, Takahashi I, Nagasaka H, Nanda R. Distal movement of maxillary molars in nongrowing patients with the skeletal anchorage system. Am J Orthod Dentofacial Orthop 2006;129:723-33 https://doi.org/10.1016/j.ajodo.2005.08.036
  28. Chang HN, Hsiao HY, Tsai CM, Roberts WE. Bone-screw anchorage for pendulum appliances and other fixed mechanics applications. Semin Orthod 2006;12:284-9 https://doi.org/10.1053/j.sodo.2006.08.006
  29. Byloff FK, Darendeliler MA. Distal molar movement using the pendulum appliance. Part 1: clinical and radiological evaluation. Angle Orthod 1997;67:249-60
  30. Bondemark L, Kurol J. Class II correction with magnets and superelastic coils followed by straight-wire mechanotherapy. Occlusal changes during and after dental therapy. J Orofac Orthop 1998;59:127-38 https://doi.org/10.1007/BF01317174
  31. Bondemark L, Kurol J, Bernhold M. Repelling magnets versus superelastic nickel-titanium coils in simultaneous distal movement of maxillary first and second molars. Angle Orthod 1994;64:189-98
  32. Chaconas SJ, Caputo AA, Harvey K. Orthodontic force characteristics of open coil springs. Am J Orthod 1984;85:494-7 https://doi.org/10.1016/0002-9416(84)90089-7

Cited by

  1. 상악 치아군의 저항중심의 위치에 관한 3차원 유한요소 해석 vol.39, pp.2, 2008, https://doi.org/10.4041/kjod.2009.39.2.83
  2. The frog appliance for upper molar distalization: a case report vol.40, pp.1, 2008, https://doi.org/10.4041/kjod.2010.40.1.50
  3. Zygoma-gear appliance for intraoral upper molar distalization vol.40, pp.3, 2008, https://doi.org/10.4041/kjod.2010.40.3.195