DOI QR코드

DOI QR Code

Isoflavone Daidzein: Chemistry and Bacterial Metabolism

  • Kim, Mi-Hyang (Program in Applied Biological Chemistry, Department of Agricultural Biotechnology and research Institute for Agricultural Sciences, Seoul National University) ;
  • Han, Jae-Hong (Metalloenzyme Research Group and Department of Biotechnology, Chung-Ang University) ;
  • Kim, Soo-Un (Program in Applied Biological Chemistry, Department of Agricultural Biotechnology and research Institute for Agricultural Sciences, Seoul National University)
  • Published : 2008.12.31

Abstract

Isoflavone daidzein is a phytoestrogen widely distributed in Leguminosae and is especially rich in the soybean. The C6-C3 (rings B and C) unit of isoflavones is derived from the phenylpropanoid pathway and the remaining C6 (ring A) unit is from the polyketide pathway. This unique carbon skeleton is the result of isomerization of the flavone catalyzed by the isoflavone synthase, a cytochrome P450 enzyme. The isoflavones daidzein and genistein are present in the plant mostly in the glucosylated forms. However, in the human intestine, the glycosidic linkage is broken, and the free form is uptaked into blood stream. The free form is further metabolized into various reduction products to end up at the equol, which is known to have the most potent estrogenic effect among the metabolites. Several human intestinal bacteria that can convert daidzein into equol have been described, and the study into the chemistry and biochemistry of the daizein reduction would be rewarding to the improvement of the human health.

Keywords

References

  1. Adlercreutz H (2003) Phytoestrogens and breast cancer. J Steroid Biochem Mol Biol 83, 113-118
  2. Adlercreutz H, Fotsis T, Heikkinen R, Dwyer JT, Woods M, Golin BR, and Gorbach SL (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and women with breast cancer. Lancet 2, 1295-1299
  3. Adlercreutz H, Fotsis T, Kurzer MS, Wahala K, Makela T, and Hase T (1995) Isotope dilution gas chromatographic-mass spectrometric method for the determination of unconjugated lignans and isoflavonoids in human feces, with preliminary results in omnivorous and vegetarian women. Anal Biochem 225, 101-108 https://doi.org/10.1006/abio.1995.1114
  4. Adlercreutz H, Hockerstededt K, Bannwart C, Bloigu S, Hamalainen E, Fotsis T, and Ollus A (1987) Effect of dietary components, including lignans and phytoestrogens, on enteroheptic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem 27, 1135-1144 https://doi.org/10.1016/0022-4731(87)90200-7
  5. Akashi T, Aoki T, and Ayage S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121, 821-828 https://doi.org/10.1104/pp.121.3.821
  6. Akashi T, Aoki T, and Ayage S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carbosyesterase-like protein in leguminous isoflavone biosynthesis. Plant Physiol 137, 882-891 https://doi.org/10.1104/pp.104.056747
  7. Atkinson C, Berman S, Humbert O, and Lamper JW (2004) In vitro incubation of human faces with daidzein and antibiotics suggests inter individual differences in the bacteria responsible for equol production. J Nutr 134, 596-599
  8. Atkinson C, Newton KM, Bowles EJA, Yong M, and Lampe JW (2008) Demographic, anthropometric, and lifestyle factors and dietary intakes in relation to daidzeinmetabolizing phenotypes among premenopausal women in the United States. Am J Clin Nutr 87, 679-687 https://doi.org/10.1093/ajcn/87.3.679
  9. Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, and Setchell KDR (1982) The identification of the weak estrogen equol [7-hydroxy-3-(4'-hydroxyphenyl)chroman] in human urine. J Biochem 201, 353-357 https://doi.org/10.1042/bj2010353
  10. Bannwartz C, Adlercreutz H, Fotsis T, Wahala K, Hase T, and Brunow G (1984) Identification of O-desmethylangolensin, a metabolite of daidzein, and of matairesol, one likely plant precursor of the animal lignin enterolactone, in human urine. Finn Chem Lett 4-5, 12-125
  11. Bannwartz C, Adlercreutz H, Fotsis T, Wahala K, Brunow G, and Hase T (1987) Identification of the isoflavonic phytoestrogens formononetin and dihydrodaidzein in human urine. International Symposium on Applied Mass Spectrometry in the Health Sciences. Barcelona, Spain
  12. Blount JW, Dixon RA and Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L). XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41, 333-349 https://doi.org/10.1016/0885-5765(92)90020-V
  13. Chang TS (2007) Two potent suicide substrates of mushroom tyrosinase: 7,8,4'-trihydroxyisoflavone and 5,7,8,4'- tetrahydroxyisoflavone. J Agric Food Chem 55, 2010-2015 https://doi.org/10.1021/jf063095i
  14. Chang YC and Nair MG (1995) Metabolism if daidzein and genistein by intestinal bacteria. J Nat Prod 58, 1892-1896 https://doi.org/10.1021/np50126a014
  15. Chen Z, Zheng W, Custer LJ, Dai Q, Shu XO, Jin F, and Franke AA (1999) Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer 33, 82-87 https://doi.org/10.1080/01635589909514752
  16. Chin-Dusting JPF, Boak L, Husband A, and Nestel PJ (2004) The isoflavone metabolite dehydroequol produces vasodilatation in human resistance arteries via a nitric oxide-dependent mechanism. Atherosclerosis 176, 45-48 https://doi.org/10.1016/j.atherosclerosis.2004.03.025
  17. Choi EJ and Kim GH (2008) Daidzein causes cell cycle arrest at the G1 and g2/M phases in human breast cancer MCF-7 and MDA-BM-453 cells. Phytomedicine 15, 683-690 https://doi.org/10.1016/j.phymed.2008.04.006
  18. Cornwell T, Cohick W, and Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65, 995-1016 https://doi.org/10.1016/j.phytochem.2004.03.005
  19. Cross HS, Kallay E, Gerdenitsh W, Adlercreutz H, and Armbrecht HJ (2004) Phytoestrogens and vitamin D metabolism: a new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas. J Nutr 134, 1207S-1212S https://doi.org/10.1093/jn/134.5.1207S
  20. Kulling S, Honig DM, and Metzler M (2001) Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J Agric Food Chem 49, 3024-3033 https://doi.org/10.1021/jf0012695
  21. Dixon, RA (2004) Phytoestrogens. Annu Rev Plant Biol 55, 225-261 https://doi.org/10.1146/annurev.arplant.55.031903.141729
  22. Dixon, RA and Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131, 878-885 https://doi.org/10.1104/pp.102.017319
  23. Heinonen S, Wahala K, and Adlercreutz H (1999) Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6'-OH-O-dma, and cis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds. Anal Biochem 274, 211-219. https://doi.org/10.1006/abio.1999.4279
  24. Herman C, Adlercreutz T, Goldin BR, Gorbach SL, Hockerstedt KAV, Watanabe S, Hamalainen EK, Markkamen MH, Makela TH, Wahala KT, Hase TA, and Rotsis T (1995) Soybean phytoestrogens intake and cancer risk. J Nutr 125, 757S-770S
  25. Holzbeierlein JM, McIntosh J, and Thrasher JB (2005) The role of soy phytoestrogens in prostate cancer. Curr Opin Urol 15, 17-22 https://doi.org/10.1097/00042307-200501000-00005
  26. Hur HG and Rafii F (2000b) Biotransformation of the isoflavonoids biocchanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 192, 21-25 https://doi.org/10.1111/j.1574-6968.2000.tb09353.x
  27. Hur HG, Berger RD, Heinze TM, Lay JO, Freeman JP, Dore J, and Rafii F (2002) Isolation of anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch Microbiol 178, 8-12 https://doi.org/10.1007/s00203-002-0414-6
  28. Hur, HG, Lay JO Jr, Berger RD, Freeman JP, and Rafii F (2000a) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174, 422-428 https://doi.org/10.1007/s002030000222
  29. Hwang CS, Kwak HS, Lim HJ, Lee SH, Kang YS, Choe TB, Hur HG, and Han KO (2006) Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Ster Biochem Mol Biol 101, 246-253 https://doi.org/10.1016/j.jsbmb.2006.06.020
  30. Jiang F, Jones GT, Husband AJ, and Dusting GJ (2003) Cardiovascular protective effects of synthetic isoflavone derivatives in apolipoprotein E-deficient mice. J Vasc Res 40, 276-284 https://doi.org/10.1159/000071891
  31. Jin JS, Nishihata T, Kakiuchi N, and Hattori M (2008) Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol Pharm Bull 31, 1621-1625 https://doi.org/10.1248/bpb.31.1621
  32. Joannou GE, Kelly GE, Reeder AY, Waring M, and Nelson C (1995) A urinary profile study of dietary phytoestrogens, the identification and mode of metabolism of new isoflavonoids. J Ster Biochem Mol Biol 54, 167-184 https://doi.org/10.1016/0960-0760(95)00131-I
  33. Kelly GE Joannou GE, Reeder AY, Nelson C, and Waring MA (1995) The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med 208, 40- 43
  34. Kelly GE, Nelson C, Waring MA, Joannou GE, and Reeder AY (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 223, 9-22 https://doi.org/10.1016/0009-8981(93)90058-C
  35. Kim J and Kwon C (2001) Estimated dietary isoflavone intake of Korean population based on national nutrition survey. Nutr Res 21, 947-953 https://doi.org/10.1016/S0271-5317(01)00310-4
  36. Kanellakis P, Nestel P, and Bobik A (2004) Angioplastyinduced superoxide anion and neointimal hyperplasia in the rabbit carotid artery; suppression by the isoflavone trans-tetrahydroddaidzein. Antherosclerosis 176, 63-72 https://doi.org/10.1016/j.atherosclerosis.2004.05.003
  37. Kelly GE, Nelson C, Waring MA, Joannou GE, and Reeder AY (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 223, 9-22 https://doi.org/10.1016/0009-8981(93)90058-C
  38. Kirk EA, Sutherland P, Wang SA, Chait A, and LeBoeuf RC (1998) Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 128, 954-959
  39. Lee HP, Gourley L, Duffy SW, Estève J, Lee J, and Day NE (1991) Dietary effects on breast-cancer risk in singapore. Lancet 337, 1197-1200 https://doi.org/10.1016/0140-6736(91)92867-2
  40. Liggins J Bluck LJC, Runswick S, Atkinson C, Coward WA, and Bingham SA (2000) Daidzein and genistein content of fruits and nuts. J Nutr Biochem 11, 326-331 https://doi.org/10.1016/S0955-2863(00)00085-1
  41. Ling S, Dai A, Williams MRI, Husband AJ, Nestel PJ, Komesaroff PA, and Sudhir K (2004) The isoflavone metabolite cis-tetrahydrodaidzein inhibits ERK-1 activation and proliferation in human vascular smooth muscle cells. J Cardiovasc Pharm 43, 622-628 https://doi.org/10.1097/00005344-200405000-00003
  42. Liu CJ, Blount JW, Steel CLe, and Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99, 14578-14583
  43. Marais JPJ, Deavour B, Dixon RA, and Ferreira D (2006) The stereochemistry of flavonoids In The Science of Flavonoids Groteword E (ed) pp.1-46 Springer, NY
  44. Matsumura A Ghosh A, Pope GS, and Dabre PD (2005) Comparative study of estrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. J Ster Biochem Mol Biol 94, 431-443 https://doi.org/10.1016/j.jsbmb.2004.12.041
  45. Mazur W and Adlercruetz H (1998) Naturally occurring estrogens in food. Pure Appl Chem 70, 1759-1776 https://doi.org/10.1351/pac199870091759
  46. Mazur W and Adlercreutz, H (2000) Overview of naturally occurring endocrine-active substances in the human diet in relation to human health. Nutrition 16, 654-658 https://doi.org/10.1016/S0899-9007(00)00333-6
  47. Nestel P, Fujii A, and Zhang L (2007) An isoflavone metabolite reduces arterial stiffness and blood pressure in overnight men and postmenopousal women. Antherosclerosis 192, 184-189 https://doi.org/10.1016/j.atherosclerosis.2006.04.033
  48. Shelnutt SR, Cimino CO, Wiggins PA, and Badger TM (2000) Urinary Pharmacokinetics of the Glucuronide and Sulfate Conjugates of Genistein and Daidzein. Cancer Epidemiol Biomarkers Prev 9, 413-419
  49. Shelnutt SR, Cimino CO, Wiggins PA, Ronis MJJ, and Badger TM (2002) Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am J Clin Nutr 76, 588-594 https://doi.org/10.1093/ajcn/76.3.588
  50. Setchell KD, Borriello SP, Hulme P, Kirk DN, and Axelson M (1984) Non-steroidal estrogens of dietary origin: possible roles in hormonedependent disease. Am J Clin Nutr 40, 569-578 https://doi.org/10.1093/ajcn/40.3.569
  51. Setchell KDR (1998) Phytoestrogens: the biochemistry, and implications for human health of soy isoflavones. Am J Clin Nutr 68, 1333S-1346S https://doi.org/10.1093/ajcn/68.6.1333S
  52. Setchell KDR and Cassidy A (1999) dietary isoflavones: biological effects and relevance to human health. J Nutr 129, 758-767 https://doi.org/10.1093/jn/129.3.758S
  53. Setchell KDR, Faughnan MS, Avades T, Zimmer-Nechemias L, Brown NM, Wolfe BE, Brashear WT, Desai P, Oldfield MF, Botting NP, and Cassidy A (2003) Comparing the pharmacokinetics of daidzein and genistein with the use of $^{13}C$-labeled tracers in premenopausal women. Am J Clin Nutr 77, 411-419
  54. Tamura M, Tsushida T, and Shunohara K (2007) Isolation of isoflavanone-metabolizing, Clostridium-like bacteria, strain TM-40, from human feces. Anaerobe 13, 32-35 https://doi.org/10.1016/j.anaerobe.2006.10.001
  55. Tian L and Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224, 496-507 https://doi.org/10.1007/s00425-006-0233-0
  56. Verma SP and Goldin BR (1998) Effect of soy-derived isoflavonoids on the induced growth of MCF-7 cells by estrogenic environmental chemicals. Nutr Cancer 30, 232-239 https://doi.org/10.1080/01635589809514669
  57. Wahala K, Koskimies JK, Mesilaakso M, Salakka AK, Leino TK, and Adlercreutz H (1997) The synthesis, structure, and anticancer activities of cis-and trans-4,',7- dihydroisoflavan-4-ols. J Org Chem 62,7690-7693 https://doi.org/10.1021/jo970892u
  58. Wakai K, Egami I, Kato K, Kawamura T, Tamakosh A, Lin Y, Nakayama T, Wada M, and Ohno Y (1999) Dietary intake and sources of isoflavanones among Japanese. Nutr Cancer 33, 139-145 https://doi.org/10.1207/S15327914NC330204
  59. Wang HJ and Murphy PA (1994) Isoflavone content in commercial soybean foods. J Agric Food Chem 42, 1666-1673 https://doi.org/10.1021/jf00044a016
  60. Wang XL, Kim KT, Lee JH, Hur HG, and Kim SI (2004) C-ring cleavage of isoflavones daidzein and genistein by a newly-isolated human intestinal bacterium Eubacterium ramulus Julong 601. J Microbiol Biotechnol 14, 766-771
  61. Wang XL, Hur HG, Lee JH, Kim KT, and Kim SI (2005) Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71, 214-219 https://doi.org/10.1128/AEM.71.1.214-219.2005
  62. Watanabe S, Yamaguchi M, Sobue T, Takahashi T, Miura T, Arai Y, Mazur W, Wahala K, and Adlercreutz H (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (Kinako). J Nutr 128, 1710-1715
  63. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126, 485-493 https://doi.org/10.1104/pp.126.2.485
  64. Won D, Shin BK, Kang S, Hur HG, Kim M, and Han J (2008) Absolute configurations of isoflavan-4-ol sterioisomers. Bioorg Med Chem Lett 18, 1953-1957
  65. Xu X, Harris KS, Wang HJ, Murphy PA, and Hendrich S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125, 2307-2315
  66. Yokoyama S and Suzuki T (2008) Isolation and characterization of a novel equol-producing bacterium from human feces. Bioscie Biotechnol Biochem 72, 2660-2666 https://doi.org/10.1271/bbb.80329
  67. Yu O, Jung W, Shi J, Croes RA, Fader GM, Mcgonigle B, and Odell JT (2000) Production of the isoflavone genistein and daidzein in non-legume dicot and monocot tissue. Plant Physiol 124, 781-793 https://doi.org/10.1104/pp.124.2.781
  68. Yu O, Shi J, Hesion AO, Maxwell CA, Mcgonigle B, and Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis on soybean seed. Phytochemistry 63, 753-763 https://doi.org/10.1016/S0031-9422(03)00345-5
  69. Zhang Y, Hendrich S, and Murphy PA (2003) Glucuronides are the main isoflavone metabolites in women. J Nutr 133, 399-404

Cited by

  1. Absolute configuration-dependent epoxide formation from isoflavan-4-ol stereoisomers by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes strain KF707 vol.89, pp.6, 2011, https://doi.org/10.1007/s00253-010-2989-1
  2. Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides vol.91, pp.4, 2011, https://doi.org/10.1007/s00253-011-3310-7
  3. Metabolomics View on Gut Microbiome Modulation by Polyphenol-rich Foods vol.11, pp.10, 2012, https://doi.org/10.1021/pr300581s
  4. sp. MRG-PMF1 vol.62, pp.51, 2014, https://doi.org/10.1021/jf504074n
  5. L. Mill sp.) on reproductive organs in rat vol.1025, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1025/1/012061
  6. Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 vol.86, pp.5, 2010, https://doi.org/10.1007/s00253-009-2389-6
  7. Influence of Isoflavone Intake and Equol-producing Intestinal Flora on Prostate Cancer Risk vol.14, pp.1, 2008, https://doi.org/10.7314/apjcp.2013.14.1.1
  8. Chemical Aspects of Gut Metabolism of Flavonoids vol.9, pp.7, 2008, https://doi.org/10.3390/metabo9070136
  9. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota vol.10, pp.2, 2008, https://doi.org/10.3390/antiox10020188