Fabrication and Characteristics of Partially Covalent-crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell

고분자 전해질 연료전지용 부분 공유 가교된 술폰화 폴리아릴렌에테르술폰 막의 제조 및 특성

  • Byun, Hong-Sik (Chemical System Technology, Keimyung University) ;
  • Yoon, Kyung-Seok (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jong-Ho (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jun-Kyu (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Hong, Sung-kwon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 변홍식 (계명대학교 화학시스템공학과) ;
  • 윤경석 (한국화학연구원 에너지소재연구센터) ;
  • 최종호 (한국화학연구원 에너지소재연구센터) ;
  • 최준규 (한국화학연구원 에너지소재연구센터) ;
  • 홍성권 (충남대학교 고분자공학과) ;
  • 홍영택 (한국화학연구원 에너지소재연구센터)
  • Published : 2008.12.30

Abstract

Covalent-crosslinked sulfonated poly(arylene ether sulfone) (SPAES) copolymers were synthesized copolymerization technique and additionally crosslinked with divinylbenzene (DVB). To optimize the reaction condition, a concentration of crosslinking agent and a reaction time were varied in the ranges of $30{\sim}90\;v/v%$ and $30{\sim}720\;min$. The properties of the crosslinked membranes were investigated by SEM, TGA and the measurement of proton conductivity. It was found that the proton conductivity of crosslinked membranes decreased depending on a degree of crosslinking while water uptake and methanol permeability reduced.

술폰화 폴리아릴렌에테르술폰 공중합체를 직접 중합법으로 합성하고 공유 가교하여 연료전지용 고분자 전해질 막을 제조하였다. 최적의 전해질 막 제조를 위하여 가교제의농도를 $30{\sim}90\;v/v%$ 및 가교시간을 30분 내지 720분의 범위에서 다양한 조성의 전해질 막 제조실험이 수행되었으며 FT-IR분광법 및 열 중량분석, 수소 이온 전도도 측정 등을 통해 전해질 막의 기본 특성들을 평가하였다. 수소 이온 전도도는 가교도에 따라 감소하는 것으로 나타났으며, 물 흡수율 및 메탄올 투과도도 함께 낮아짐을 알 수 있었다.

Keywords

References

  1. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells", Solid State Ionics, 147, 189 (2002) https://doi.org/10.1016/S0167-2738(02)00011-5
  2. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Development and performance characterization of new electrocatalysts for PEMFC", J. Power Sources, 106, 206 (2002) https://doi.org/10.1016/S0378-7753(01)01040-0
  3. S. Gottesfeld and T. A. Zawodzinski, "In advances in electrochemical science and engineering", R. C. Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias, Eds., 5, pp. 195, Wiley-VCH, Weinheim, Germany (1997)
  4. J. Kerres, W. Cui, and S. Reichle, "New sulfonated engineering polymers via the metalation, Route. 1.: sulfonated poly(ethersu1fone) PSU Udel via metalation-sulfination-oxidation", J. Polym. Sci. A Polym. Chem., 1, 2421 (1996)
  5. M.-H. Chen, T.-C. Chiao, and T.-W. Tseng, "Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  6. J. Kerres, W. Cui, R. Disson, and W. Neubrand, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups", J. Membr. Sci., 139, 211 (1998) https://doi.org/10.1016/S0376-7388(97)00253-6
  7. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta, 46, 2401 (2001) https://doi.org/10.1016/S0013-4686(01)00437-6
  8. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  9. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  10. H. S. Shin, C. S. Lee, J. H. Jun, S. Y. Jung, J. W. Rhim, and S. Y. Nam, "Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) suing sulfonated polysulfone", Membrane Journal, 12, 247 (2002)
  11. T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene)", Solid State Ionics, 106, 219 (1998) https://doi.org/10.1016/S0167-2738(97)00512-2
  12. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  13. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  14. D. J. Jones and J. Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications", J. Membr. Sci., 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  15. H. S. Byun and T.-M. Tak, "Preparation and structure of the synthetic polymeric membranes based on polystyrene and poly(sodium 4-styrene sulfonate", Membrane Journal, 6, 273 (1996)
  16. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, "Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications", J. Appl. Polym. Sci., 100, 4595 (2006) https://doi.org/10.1002/app.22803
  17. P. M. Hergenrother, J. G. Smith Jr, and J. W. Connell, "Synthesis and properties of poly(arylene ether benzimidazole)s", Polymer, 34, 856 (1993) https://doi.org/10.1016/0032-3861(93)90374-J
  18. M. M. Nasef and H. Saidi, "Preparation of crosslinked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films", J. Membr. Sci., 216, 27 (2003) https://doi.org/10.1016/S0376-7388(03)00027-9
  19. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moo, "Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications", J. Membr. Sci., 309, 156 (2008) https://doi.org/10.1016/j.memsci.2007.10.013
  20. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Roberson, M. D. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", J. Membr. Sci., 173, 17 (2000) https://doi.org/10.1016/S0376-7388(00)00345-8
  21. F. Wang, M. Hickener, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002) https://doi.org/10.1016/S0376-7388(01)00620-2
  22. Y. Jung, H. S. Park, H. Byun, and Y. T. Hong, "A study on the preparation and characterization of sulfonated PS/PVdF composite membranes", Membrane Journal, 16, 286 (2006)