Effects of Mixed Casting Solvents on Morphology and Characteristics of Sulfonated Poly(aryl ether sulfone) Membranes for DMFC Applications

직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 전해질 막의 혼합 캐스팅 용매에 따른 형태 및 특성

  • Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Ji-Young (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choi, Jun-Kyu (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choi, Kuk-Jong (Advanced Materials Synthesis Lab., Chungnam National University) ;
  • Hwang, Taek-Sung (Advanced Materials Synthesis Lab., Chungnam National University) ;
  • Kim, Hyung-Joong (Department of Advanced Materials Engineering, Kongju National University)
  • 홍영택 (한국화학연구원 에너지소재연구센터) ;
  • 박지영 (한국화학연구원 에너지소재연구센터) ;
  • 최준규 (한국화학연구원 에너지소재연구센터) ;
  • 최국종 (충남대학교 화학공학과) ;
  • 황택성 (충남대학교 화학공학과) ;
  • 김형중 (공주대학교 고분자공학과)
  • Published : 2008.12.30

Abstract

Partially sulfonated poly(aryl ether sulfone) membranes were prepared from the sulfonated sulfone monomer, which was synthesized by a nucleophilic substitution, non-sulfonated monomers and potassium carbonate by a direct polymerization method and a subsequent solution casting technique with mixed solvents of N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). To investigate the effect of mixed solvent, the volume ratios of NMP and DMAc were varied in the range of $0{\sim}100%$ and the degrees of sulfonation of the copolymers were fixed as 50%. The surface properties of the resulting membranes were examined by scanning electron microscope (SEM) and atomic force microscope (AFM), and a comparative study of the morphology changes and the physicochemical properties such as proton conductivity and methanol permeability was achieved. It was found that proton conductivities depend on the volume ratio of NMP-DMAc mixed solvents, and the proton conductivity determined at the condition of $25^{\circ}C$ and 100% relative humidity was $1.38{\times}10^{-1}\;S/cm$ for the membrane prepared in the 50:50 v/v-% of NMP : DMAc mixed solvent.

친전자성 치환반응으로 제조된 술폰화 단량체, 비(非)술폰화 단량체 및 탄산칼륨을 이용하는 직접 중합법을 통하여 높은 점도의 술폰화 폴리아릴에테르술폰 공중합체를 합성하고, 이들을 원료로 N-메틸-2-피롤리돈(NMP)과 디메틸아세트아미드(DMAc)의 혼합 용매 상에서 직접 메탄을 연료전지용 고분자 전해질 막을 제조하였다. 막 제조 시의 용매 효과에 주목하여 혼합 용매의 부피 비는 $0{\sim}100%$로 변화시키고 공중합체의 술폰화도는 50%로 고정하였다. 이온 전도도 및 메탄올 투과도 측정을 통하여 최종 전해질 막의 기본 특성을 파악하고, 주사전자현미경 및 원자간력현미경분석을 통한 표면 분석 결과와 비교함으로써 이들의 상관관계를 고찰하였다. 막 제조 시의 용매 혼합 비율을 적절히 조절함에 따라 최종 전해질 막의 이온 전도도를 크게 향상시킬 수 있음이 확인되었는데, $25^{\circ}C$의 100% 가습 환경에서 측정된 수소 이온 전도도는 NMP : DMAc 50:50 부피/부피-%에서 최대 $1.38{\times}10^{-1}\;S/cm$이었다.

Keywords

References

  1. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells", Solid State Ionics, 147, 189 (2002) https://doi.org/10.1016/S0167-2738(02)00011-5
  2. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Development and performance characterization of new electrocatalysts for PEMFC", J. of Power Sources, 106, 206 (2002) https://doi.org/10.1016/S0378-7753(01)01040-0
  3. 이영무, 박호범, "직접 메탄올 연료전지용 고분자전해질 분리막 소재의 개발", 멤브레인, 10, 103 (2000)
  4. S. Gottesfeld and T. A. Zawodzinski, "In advances in dlectrochemical science and engineering", R. C. Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias, Eds., 5, pp. 195, Wiley-VCH, Weinheim, Germany (1997)
  5. J. Kerres, W. Cui, and S. Reichle, "New sulfonated engineering polymers via the Metalation, Route. 1.: Sulfonated Poly(ethersu1fone) PSU Udel via Metalation-Sulfination-Oxidation", J. Polym. Sci.: Part A Polym. Chem., 1, 2421 (1996)
  6. M.-H. Chen, T.-C. Chiao, and T.-W. Tseng, "Preparation of sulfonated polysulfone/ polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  7. J. Kerres, W. Cui, R. Disson, and W. Neubrand, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups", J. Membr. Sci., 139, 211 (1998) https://doi.org/10.1016/S0376-7388(97)00253-6
  8. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochimica Acta, 46, 2401 (2001) https://doi.org/10.1016/S0013-4686(01)00437-6
  9. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  10. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  11. T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxbenzoyl-1,4-phenylene)", Solid State Ionics, 106, 219 (1998) https://doi.org/10.1016/S0167-2738(97)00512-2
  12. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  13. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  14. D. J. Jones and J. Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications", J. Membr. Sci., 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  15. 남상용, 박병길, 공성호, 김영진, "직접메탄올 연료 전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성", 멤브레인, 15, 165 (2005)
  16. 유민철, 장봉준, 김정훈, 이수복, 이용택, "연료전지를 위한 술폰화된 perfluorocyclobutyl biphenylene 고분자 전해질막", 멤브레인, 15, 355 (2005)
  17. 김정훈, 신정필, 박인준, 이수복, 서동학, "직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구", 멤브레인, 14, 173 (2004)
  18. G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, "Electron and proton conducting polymers: recent developments and prospects", Electrochimica Acta, 45, 2403 (2000) https://doi.org/10.1016/S0013-4686(00)00329-7
  19. 이영무, 이선용, "설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용", 멤브레인, 14, 240 (2004)
  20. S. Saga, H. Matsumoto, K. Saito, M. Minagawa, and A. Tanioka, "Polyelectrolyte membranes based on hydrocarbone polymer containing fullerene", J. Power Sources, 176, 16 (2008) https://doi.org/10.1016/j.jpowsour.2007.10.017
  21. M. Rikukawa, D. Inagaki, K. Kaneko, Y. Takeoka, I. Ito, Y. Kanzaki, and K. Sanui, "Proton conductivity of smart membranes based on hydrocarbon polymers having phosphoric acid groups", J. Molecular Structure, 739, 153 (2005) https://doi.org/10.1016/j.molstruc.2004.04.034
  22. M. Kawahara, M. Rikukawa, and K. Sanui, "Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(benzimidazole)", Polym. Adv. Technol., 11, 544 (2000) https://doi.org/10.1002/1099-1581(200008/12)11:8/12<544::AID-PAT3>3.0.CO;2-N
  23. M. Kawahara, M. Rikukawa, K. Sanui, and N. Ogata, "Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films", Solid State Ionics, 136, 1193 (2000) https://doi.org/10.1016/S0167-2738(00)00596-8
  24. R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, and S.-H. Moon, "Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications", J. Membr. Sci., 309, 156 (2008) https://doi.org/10.1016/j.memsci.2007.10.013
  25. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  26. B. Yang and A. Manthiram, "Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells", Electrochemistry Communications, 6, 231 (2004) https://doi.org/10.1016/j.elecom.2003.12.005
  27. H. Deligoz, S. Yilmazturk, T. Karaca, H. Ozdemir, S. N. Koc, F. Oksuzomer, A. Durmus, and M. A. Gurkaynak, "Self-Assembled Polyelectrolyte Multilayered Films on Nafion with Lowered Methanol Cross-Over for DMFC Applications", J. Membr. Sci., In Press, Accepted Manuscript, Available online 8 November 2008
  28. W. L. Harrion, M. A. Hickner, Y. S. Kim, and J. E. McGrath, "Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building block: synthesis, characterization, and performance - A topical review", Fuel Cells, 5, 201 (2005) https://doi.org/10.1002/fuce.200400084
  29. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, "Membranes from sulfonated block copolymers for use in fuel cells", Sep. & Pur. Tech., 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  30. Y. Chen, Y. Meng, S. Wang, S. Tian, Y. Chena, and A. S. Hay, "Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application", J. Membr. Sci., 280, 433 (2006) https://doi.org/10.1016/j.memsci.2006.01.052
  31. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, "Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications", J. Appl. Polym. Sci., 100, 4595 (2006) https://doi.org/10.1002/app.22803
  32. P. J. James, T. J. McMaster, J. M. Newton, and M. J. Miles, "In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM", Polymer, 41, 4223 (2000) https://doi.org/10.1016/S0032-3861(99)00641-2
  33. W. L. Harrison, F. Wang, J. B. Mecham, V. A. Bhanu, E. Hill, Y. S. Kim, and J. E. McGrath, "Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I", J. of Polym. Sci.: Part A: Polym. Chem., 41, 2264 (2003) https://doi.org/10.1002/pola.10755
  34. A. Casalegno, and R. Marchesi, "DMFC performance and methanol cross-over: Experimental analysis and model validation", J. Power Sources, 185, 318 (2008) https://doi.org/10.1016/j.jpowsour.2008.06.071
  35. F. Liu and C.-Y. Wang, "Water and methanol crossover in direct methanol fuel cells - Effect of anode diffusion media", Electrochimica Acta, 53, 5517 (2008) https://doi.org/10.1016/j.electacta.2008.03.011
  36. S. Eccarius, B. L. Garcia, C. Hebling, and J. W. Weidner, "Experimental validation of a methanol crossover model in DMFC applications", J. Power Sources, 179, 723 (2008) https://doi.org/10.1016/j.jpowsour.2007.11.102
  37. H. S. Huang, C. Y. Chen, S. C. Lo, C. J. Lin, S. J. Chen, and L. J. Lin, "Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM", Appl. Sur. Sci., 253, 2685 (2006) https://doi.org/10.1016/j.apsusc.2006.05.048
  38. Y. Li, F. Wang, J. Yang, D. Liu, A. Roy, S. Case, J. Lesko, and J. E. McGrath, "Synthesis and characterization of controlled molecular weight disulfonated poly(arylene ether sulfone) copolymers and their applications to proton exchange membranes", Polymer, 47, 4210 (2006) https://doi.org/10.1016/j.polymer.2006.03.003
  39. B. Kim, J. Kim, B. J. Cha, and B. Jung, "Effect of selective swelling on protons and methanol transport properties through partially sulfonated block copolymer membranes", J. Membr. Sci., 280, 270 (2006) https://doi.org/10.1016/j.memsci.2006.01.042
  40. C. K. Shin, G. Maier, B. Andreaus, and G. G. Scherer, "Block copolymer ionomers for ion conductive membranes", J. Membr. Sci., 245, 147 (2004) https://doi.org/10.1016/j.memsci.2004.07.027
  41. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membr. Sci., 259, 10 (2005) https://doi.org/10.1016/j.memsci.2005.01.035