Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test

강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선

  • Ki, Wan-Seo (Department of Civil construction Engineering, Chosun College of Science & Technology) ;
  • Kim, Sun-Hak (Department of Civil Engineering, Chosun University)
  • 기완서 (조선이공대학 토목건설과) ;
  • 김선학 (조선대학교 토목공학과)
  • Published : 2008.12.30

Abstract

A simulated rainfall system was built, and the unsaturated characteristics were examined by execution of simulated rainfall system test and soil water characteristic curve cell test(SWCC Cell Test) under the various rainfall and slope conditions. With the results, the applicability of infiltration behavior under rainfall and soil water characteristic curve models to the unsaturated weathered granite soil was examined. At the results of comparison the volumetric water content and matric suction measured in the wetting process(under rainfall) with those in the drying process(leaving as it was) of the simulated rainfall system, the volumetric water content showed a difference of $2{\sim}5%$ and matric suction of about $3{\sim}10\;kPa$, indicating the occurrence of hysteresis. In addition, the difference was relatively larger in matric suction than in the volumetric water content, and this tells that the hysteresis behavior is larger in matric suction. When the soil water characteristic curve derived from measurements in simulated rainfall system test were compared with those from the soil water characteristic curve cell test, both methods produced soil water characteristic curves close each other in the wetting process and the drying process, but in both, there was a difference between results obtained from in the wetting process and those from in the drying process. Thus, when soil water characteristic curves are rationally applied to the design and stability analysis considering of the properties of unsaturated soil, it is considered desirable to apply the soil water characteristic curve of the wetting process to the wetting process, and that of the drying process to the drying process.

강우재현장치를 제작하고, 강우 및 사면조건에 따라 강우재현 모형실험과 함수특성곡선실험(SWCC Cell Test)을 실시하여 불포화 특성에 관해 연구하였다. 그 결과를 이용하여 강우에 따른 침투거동 특성과 함수특성곡선 모델들의 불포화된 화강암질 풍화토에 대한 적용을 검토하였다. 강우재현 모형실험의 습윤과정(강우재현)과 건조과정(방치)에서 계측된 체적함수비와 모관흡인력을 비교한 결과 체적함수비는 $2{\sim}5%$, 모관흡인력은 $3{\sim}10\;kPa$ 정도 값의 차이를 보여 이력현상을 확인 할 수 있었다. 또한, 모관흡인력의 값이 체적함수비의 값에 비해 상대적으로 큰 차이를 보여 모관흡인력에 이력거동이 더 큼을 확인할 수 있었다. 강우재현 모형실험과 함수특성곡선실험에서 얻은 결과로부터 구한 함수특성곡선을 비교하면, 습윤과정과 건조과정에서 두 방법 모두 근접한 함수특성곡선을 얻을 수 있었으나, 두 방법 모두 습윤과정과 건조과정에서의 결과는 차이가 있었다. 이로써 불포화토의 특성을 고려한 보다 합리적인 설계나 안정검토에 함수특성곡선을 적용시킬 때에는 습윤과정에서는 습윤과정 함수특성곡선을 건조과정에서는 건조과정 함수특성곡선을 적용하는 것이 합당할 것으로 여겨진다.

Keywords

References

  1. 심태섭, 김선학, 기완서, 주승완, 2004, 강우에 따른 화강 암질 풍화토 사면의 전단강도 특성에 관한 연구, 대 한지질공학회지, 14(4), 349-360
  2. 이광모, 심태섭, 김선학, 최용준, 2005, 강우강도에 따른 무한사면의 간극수압 변화의 특성, 대한토목학회, 2005년도 정기 학술대회 논문집, 4442-4445
  3. 조성은, 이승래, 2000, 강우침투에 따른 불포화 토사사면 의 안정해석, 한국지반공학회지, 16(1), 51-64
  4. 조성은, 이승래, 2000, 강우특성을 고려한 사면의 표면파 괴에 대한 안정성 평가, 한국지반공학회지, 16(5), 107-116
  5. 홍원표, 김상규, 김마리아, 김윤원, 한중근, 1990, 강우로 기인되는 우리나라 사면활동의 예측, 대한토질공학회 지, 6(2) 55-63
  6. Brooks, R. H., Corey, A. T., 1964, Hydraulic Properties of Porous Media, Hydrol. Papers, Colorado State University, Fort Collis, Colordo
  7. Fredlund, D. G., Rahardjo, H., 1993, Soil Mechanics for Unsaturated Soils, John Wiley and Sone, Inc
  8. Fredlund, D. G., Xing, A., Huang, S., 1994, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, 31, 533-546 https://doi.org/10.1139/t94-062
  9. Gardner, W. R., D. Hillel, Y. Benyamini, 1970, Postirrigation movement of soil water, 1. Redistribution, Water Resour. Res., 6, 851-861 https://doi.org/10.1029/WR006i003p00851
  10. Green, W. H., Ampt, G. A., 1911, Studies on Soil Physics : 1. Flow of Air and Water through Soils, Journal of Agricultural Science, 4, 1-24 https://doi.org/10.1017/S0021859600001441
  11. Leong, E. C., Rahardjo, H., 1997, Review of Soilwater Characteristic Curve Equations, Journal of Geotechnical and Geoenvironmental Engineering, December, ASCE, 123(12)
  12. Soil-Vision User's Manual, 2004, Soil Vision Systems Ltd
  13. Tami, D., Rahardjo, H., Leong, B. C., Fredlund, D. G., 2004, Design and laboratory verification of a physical model of sloping capillary barrier, Canadian Geotechnical Journal, 41, 814-830 https://doi.org/10.1139/t04-036
  14. Tsaparas, I., Rahardjo, H., Toll, D. G., Leong, E, C., 2002, Controlling parameters for rainfall-induced landslides, Computers and Geotechnics, 29, 1-27 https://doi.org/10.1016/S0266-352X(01)00019-2