A Preliminary Study on Granite Suite and Supersuite for the Jurassic Granites in South Korea

우리나라 쥬라기 화강암의 스위트/슈퍼스위트 분류에 대한 예비적 연구

  • Jwa, Yong-Joo (Department of Earth & Environmental Sciences, Gyeongsang National University)
  • 좌용주 (경상대학교 지구환경과학과)
  • Published : 2008.12.31

Abstract

Intruding ages for the Jurassic(${\sim}Triassic$) granites in South Korea can be reestablished as $210{\sim}170\;Ma$ and $180{\sim}160\;Ma$ according to the tectonic provinces of magma emplacement. Most Jurassic granites in the Gyeonggi massif have the intrusion ages of $180{\sim}160\;Ma$, indicative of middle Jurassic igneous activity. On the other hand the intrusion ages ($210{\sim}170\;Ma$) for the Jurassic granites in the Yeongnam massif represent late Triassic to middle Jurassic igneous activity. Using the concept of granite suite/supersuite, the Jurassic granites in South Korea can be hierarchically divided into two supersuites and two suites. Huge batholith of NE-SW direction in the Gyeonggi massif could be designated to be 'Gyeonggi Supersuite', which was originated from the mixture of igneous protolith and more evoloved crustal materials and formed in the post-orogenic environment after collision of the north China and south China blocks. There are one supersuite and two suites in the Yeongnam massif 'Yeongnam Supersuite' could be designated from the NE-SW trend batholith in the massif. This supersuite was originated from the mixture of igneous protolith and evolved crustal materials. Granitic rocks between Andong and Girncheon areas could be defined as 'Andong Suite'. This suite was originated from the mixture of depleted mantle and igneous protolith. The Daegang and Hamchang granties could be designated as 'Daegang Suite'. This suite was formed in the anorogenic environment which was different from the orogenic environment of the other supersuite/suite in the Yeongnam massif.

우리나라 중생대 쥬라기(${\sim}$트라이아스기) 화강암의 관입 연대는 화강암이 분포하는 지체구조에 따라 $210{\sim}170\;Ma$$180{\sim}160\;Ma$의 두 시기로 재설정 될 수 있다. 경기육괴의 쥬라기 화강암의 관입 시기는 주로 $180{\sim}160\;Ma$에 속하여 쥬라기 중기의 화성활동으로 규정된다. 한편, 영남육괴의 쥬라기 화강암의 경우 $210{\sim}170\;Ma$의 관입 연대를 보여 트라이아스기 말기에서 쥬라기 중기에 걸친 화성활동으로 정의될 수 있다. 우리나라 중생대 쥬라기 화강암에 대한 스위트/슈퍼스위트 구분에서 경기육괴의 북동-남서방향의 커다란 쥬라기 저반은 '경기 슈퍼스위트'로 설정될 수 있다. 이 슈퍼스위트는 화성기원의 지각성분에 좀 더 부화된 지각 성분이 포함된 근원물질에서 유래하며, 충돌환경으로부터 약 50Ma후에 일어난 후조산환경(post-orogenic)에서 형성되었을 것으로 판단된다. 영남육괴의 쥬라기 화강암은 하나의 슈퍼스위트와 두 개의 스위트로 구분된다. 북동-남서 방향의 저반형 화강암체들로부터 '영남 슈퍼스위트'가 설정될 수 있다. 이 슈퍼스위트는 화성기원의 지각성분에 좀 더 부화된 지각성분이 포함된 근원물질에서 유래한다. 영남육괴의 안동김천 사이의 화강암체들은 '안동 스위트'로 설정될 수 있는데, 이 스위트는 결핍된 맨틀 성분에 화성기원 지각성분이 혼합된 근원물질에서 유래하며, 화산전면대에 비교적 가까운 지역에서 형성되었을 것으로 생각된다. 영남육괴의 대강화강암과 함창 화강암은 '대강 스위트'로 설정될 수 있다. 대강 스위트는 영남육괴에서 일어난 대부분의 쥬라기 화성활동과는 지체구조적 환경이 다른, 즉 인장력이 우세하던 환경에서 마그마가 형성된 비조산성 화성활동으로 특징지어진다.

Keywords

References

  1. 박계헌, 이호선, 정창식, 2005, 영남육괴 중부 김천, 성주 및 안의지역 화강섬록암의 스핀 U-Pb 연대. 암석학회지, 14, 1-11
  2. 박계헌, 이호선, 송용선, 정창식, 2006, 영남육괴 함양, 거 창 및 영주 화강암-화강섬록암의 스핀 U-Pb 연대. 암석학회지, 15, 39-48
  3. 좌용주, 김종선, 김건기, 2005, 우리나라 트라이아스기 화 강암의 스위트/슈퍼스위트 분류. 암석학회지, 14, 226-236
  4. Chappell, B.W., 1999, Aluminium saturation in I- and Stype granites and the characterization of fractionated haplogranites. Lithos, 46, 535-551 https://doi.org/10.1016/S0024-4937(98)00086-3
  5. Chappell, B.W. and White, A.J.R., 1974, Two contrasting granite types. Pacific Geology, 8, 173-174
  6. Chappell, B.W. and White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Scienes, 83, 1-26
  7. Cho, D.-L., Lee, S.R. and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105, 191-200 https://doi.org/10.1016/j.lithos.2008.03.007
  8. Cho, K.-H., Takagi, H. and Suzuki, K., 1999, CHIME monazite age of granitic rocks in the Sunchang shear zone, Korea: Timing of dextral shear. Geosciences Journal, 3, 1-15 https://doi.org/10.1007/BF02910229
  9. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  10. Hine, R., Williams, I.S., Chappell, B.W. and White, A.J.R., 1978, Contrasts between I- and S-type granitoids of the Kosciusko Batholith. Journal of Geological Society of Australia, 25, 219-234 https://doi.org/10.1080/00167617808729029
  11. Jwa, Y.-J., 2004, Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh, 95, 181-195 https://doi.org/10.1017/S0263593304000161
  12. Jwa, Y-J., Lee, Y.I. and Orihashi, Y., 2008, Zircon U-Pb ages of the Mesozoic granites in the central Yeongnam Massif: Including newly found Cretaceous granites (abstract). Geological Society of Korea. Abstract with program, 14
  13. Kim, C.-B. and Turek, A., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal, 30, 323-336 https://doi.org/10.2343/geochemj.30.323
  14. Kim, C.-B., Chang H.-W. and Turek, A., 2003, U-Pb zircon ages and Sr-Nd-Pb isotopic compositions for Permian- Jurassic plutons in the Ogcheon belt and Ryeongnam massif, Korea: Tectonic implications and correlation with the China Qinling-Dabie belt and the Japan Hida belt. The Island Arc, 12, 366-382 https://doi.org/10.1046/j.1440-1738.2003.00404.x
  15. Lee, B.-J., Lee, S.-R., Cho, D.-L. and Amstrong, R., 2001, Multiple ductile shearing during Jurassic times in the Jeonju ductile shear zone, Korea (abstract). Geological Society of Korea. Abstract with program, 116
  16. Montel, J.M., Mouchel, R. and Pichavant, M., 1988, High apatite solubility in peraluminous melts. Terra Cognita, 8, 71
  17. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61 https://doi.org/10.1016/j.gr.2005.06.001
  18. Pichavant, M., Montel, J.M. and Richard, L.R., 1992, Apatite solubility in peraluminous liquids: experimental data and an extension of the model of Harrison and Watson( 1984). Geochimica et Cosmochimica Acta, 56, 3855-3861 https://doi.org/10.1016/0016-7037(92)90178-L
  19. Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T. and Park, S.- H., 2001, Pretectonic and posttectonic emplacement of the granitoids in the south central Okcheon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850-867 https://doi.org/10.1029/2000TC001267
  20. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/ 2004TC001720
  21. Turek, A. and Kim, C.-B., 1995, U-Pb zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, 29, 243-258 https://doi.org/10.2343/geochemj.29.243
  22. White, A.J.R., Allen, C.M., Beams, S.D., Carr, P.F., Champion, D.C., Chappell, B.W., Wyborn, D. and Wyborn, L.A.I., 2001, Granite suites and supersuites of eastern Australia. Australian Journal of Earth Sciences, 48, 515-530 https://doi.org/10.1046/j.1440-0952.2001.00874.x
  23. Wolf, M.B. and London, D., 1994, Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58, 4127-4145 https://doi.org/10.1016/0016-7037(94)90269-0